[LeetCode] 131. Palindrome Partitioning 回文分割
Given a string s, partition s such that every substring of the partition is a palindrome.
Return all possible palindrome partitioning of s.
Example:
Input: "aab" Output: [ ["aa","b"], ["a","a","b"] ]
解法1:dfs, 回溯Backchecking,
解法2:DP
Java:
public class Solution { List<List<String>> resultLst; ArrayList<String> currLst; public List<List<String>> partition(String s) { resultLst = new ArrayList<List<String>>(); currLst = new ArrayList<String>(); backTrack(s,0); return resultLst; } public void backTrack(String s, int l){ if(currLst.size()>0 //the initial str could be palindrome && l>=s.length()){ List<String> r = (ArrayList<String>) currLst.clone(); resultLst.add(r); } for(int i=l;i<s.length();i++){ if(isPalindrome(s,l,i)){ if(l==i) currLst.add(Character.toString(s.charAt(i))); else currLst.add(s.substring(l,i+1)); backTrack(s,i+1); currLst.remove(currLst.size()-1); } } } public boolean isPalindrome(String str, int l, int r){ if(l==r) return true; while(l<r){ if(str.charAt(l)!=str.charAt(r)) return false; l++;r--; } return true; } }
Java: DP
public class Solution { public static List<List<String>> partition(String s) { int len = s.length(); List<List<String>>[] result = new List[len + 1]; result[0] = new ArrayList<List<String>>(); result[0].add(new ArrayList<String>()); boolean[][] pair = new boolean[len][len]; for (int i = 0; i < s.length(); i++) { result[i + 1] = new ArrayList<List<String>>(); for (int left = 0; left <= i; left++) { if (s.charAt(left) == s.charAt(i) && (i-left <= 1 || pair[left + 1][i - 1])) { pair[left][i] = true; String str = s.substring(left, i + 1); for (List<String> r : result[left]) { List<String> ri = new ArrayList<String>(r); ri.add(str); result[i + 1].add(ri); } } } } return result[len]; } }
Python:
# Time: O(2^n) # Space: O(n) # recursive solution class Solution: # @param s, a string # @return a list of lists of string def partition(self, s): result = [] self.partitionRecu(result, [], s, 0) return result def partitionRecu(self, result, cur, s, i): if i == len(s): result.append(list(cur)) else: for j in xrange(i, len(s)): if self.isPalindrome(s[i: j + 1]): cur.append(s[i: j + 1]) self.partitionRecu(result, cur, s, j + 1) cur.pop() def isPalindrome(self, s): for i in xrange(len(s) / 2): if s[i] != s[-(i + 1)]: return False return True
Python:
# Time: O(n^2 ~ 2^n) # Space: O(n^2) # dynamic programming solution class Solution: # @param s, a string # @return a list of lists of string def partition(self, s): n = len(s) is_palindrome = [[0 for j in xrange(n)] for i in xrange(n)] for i in reversed(xrange(0, n)): for j in xrange(i, n): is_palindrome[i][j] = s[i] == s[j] and ((j - i < 2 ) or is_palindrome[i + 1][j - 1]) sub_partition = [[] for i in xrange(n)] for i in reversed(xrange(n)): for j in xrange(i, n): if is_palindrome[i][j]: if j + 1 < n: for p in sub_partition[j + 1]: sub_partition[i].append([s[i:j + 1]] + p) else: sub_partition[i].append([s[i:j + 1]]) return sub_partition[0]
Python: wo
class Solution(object): def partition(self, s): """ :type s: str :rtype: List[List[str]] """ res = [] self.helper(res, s, [], 0) return res def helper(self, res, s, cur, l): if l == len(s): res.append(list(cur)) return for r in range(l, len(s)): if self.isPalindrome(s, l, r): if l == r: cur.append(s[l]) else: cur.append(s[l:r+1]) self.helper(res, s, cur, r + 1) cur.pop() def isPalindrome(self, s, l, r): while l < r: if s[l] != s[r]: return False l += 1 r -= 1 return True
Python:
class Solution(object): def partition(self, s): """ :type s: str :rtype: List[List[str]] """ res = [] self.dfs(s, [], res) return res def dfs(self, s, path, res): if not s: res.append(path) return for i in range(1, len(s)+1): if self.isPal(s[:i]): self.dfs(s[i:], path+[s[:i]], res) def isPal(self, s): return s == s[::-1] res = [] self.helper(res, s, [], 0) return res
Python:
class Solution(object): def partition(self, s): """ :type s: str :rtype: List[List[str]] """ return [[s[:i]] + rest for i in xrange(1, len(s)+1) if s[:i] == s[i-1::-1] for rest in self.partition(s[i:])] or [[]]
C++:
class Solution { public: vector<vector<string>> partition(string s) { vector<vector<string>> res; vector<string> out; partitionDFS(s, 0, out, res); return res; } void partitionDFS(string s, int start, vector<string> &out, vector<vector<string>> &res) { if (start == s.size()) { res.push_back(out); return; } for (int i = start; i < s.size(); ++i) { if (isPalindrome(s, start, i)) { out.push_back(s.substr(start, i - start + 1)); partitionDFS(s, i + 1, out, res); out.pop_back(); } } } bool isPalindrome(string s, int start, int end) { while (start < end) { if (s[start] != s[end]) return false; ++start; --end; } return true; } };
类似题目:
[LeetCode] 132. Palindrome Partitioning II 回文分割 II