[LeetCode] 787. Cheapest Flights Within K Stops K次转机内的最便宜航班
There are n
cities connected by m
flights. Each fight starts from city u
and arrives at v
with a price w
.
Now given all the cities and fights, together with starting city src
and the destination dst
, your task is to find the cheapest price from src
to dst
with up to k
stops. If there is no such route, output -1
.
Example 1: Input: n = 3, edges = [[0,1,100],[1,2,100],[0,2,500]] src = 0, dst = 2, k = 1 Output: 200 Explanation: The graph looks like this:
The cheapest price from city0
to city2
with at most 1 stop costs 200, as marked red in the picture.
Example 2: Input: n = 3, edges = [[0,1,100],[1,2,100],[0,2,500]] src = 0, dst = 2, k = 0 Output: 500 Explanation: The graph looks like this:
The cheapest price from city0
to city2
with at most 0 stop costs 500, as marked blue in the picture.
Note:
- The number of nodes
n
will be in range[1, 100]
, with nodes labeled from0
ton
- 1
. - The size of
flights
will be in range[0, n * (n - 1) / 2]
. - The format of each flight will be
(src,
dst
, price)
. - The price of each flight will be in the range
[1, 10000]
. k
is in the range of[0, n - 1]
.- There will not be any duplicated flights or self cycles.
Java:
class Solution { public int findCheapestPrice(int n, int[][] flights, int src, int dst, int K) { Map<Integer, Map<Integer, Integer>> prices = new HashMap<>(); for (int[] f : flights) { if (!prices.containsKey(f[0])) prices.put(f[0], new HashMap<>()); prices.get(f[0]).put(f[1], f[2]); } Queue<int[]> pq = new PriorityQueue<>((a, b) -> (Integer.compare(a[0], b[0]))); pq.add(new int[] {0, src, k + 1}); while (!pq.isEmpty()) { int[] top = pq.remove(); int price = top[0]; int city = top[1]; int stops = top[2]; if (city == dst) return price; if (stops > 0) { Map<Integer, Integer> adj = prices.getOrDefault(city, new HashMap<>()); for (int a : adj.keySet()) { pq.add(new int[] {price + adj.get(a), a, stops - 1}); } } } return -1; } }
Python:
class Solution(object): def findCheapestPrice(self, n, flights, src, dst, K): """ :type n: int :type flights: List[List[int]] :type src: int :type dst: int :type K: int :rtype: int """ adj = collections.defaultdict(list) for u, v, w in flights: adj[u].append((v, w)) best = collections.defaultdict(lambda: collections.defaultdict(lambda: float("inf"))) min_heap = [(0, src, K+1)] while min_heap: result, u, k = heapq.heappop(min_heap) if k < 0 or best[u][k] < result: continue if u == dst: return result for v, w in adj[u]: if result+w < best[v][k-1]: best[v][k-1] = result+w heapq.heappush(min_heap, (result+w, v, k-1)) return -1
Python:
class Solution(object): def findCheapestPrice(self, n, flights, src, dst, K): """ :type n: int :type flights: List[List[int]] :type src: int :type dst: int :type K: int :rtype: int """ f = collections.defaultdict(dict) for a, b, p in flights: f[a][b] = p heap = [(0, src, k + 1)] while heap: p, i, k = heapq.heappop(heap) if i == dst: return p if k > 0: for j in f[i]: heapq.heappush(heap, (p + f[i][j], j, k - 1)) return -1
C++:
// Time: O((|E| + |V|) * log|V|) = O(|E| * log|V|) // Space: O(|E| + |V|) = O(|E|) class Solution { public: int findCheapestPrice(int n, vector<vector<int>>& flights, int src, int dst, int K) { using P = pair<int, int>; unordered_map<int, vector<P>> adj; for (const auto& flight : flights) { int u, v, w; tie(u, v, w) = make_tuple(flight[0], flight[1], flight[2]); adj[u].emplace_back(v, w); } unordered_map<int, unordered_map<int, int>> best; using T = tuple<int, int, int>; priority_queue<T, vector<T>, greater<T>> min_heap; min_heap.emplace(0, src, K + 1); while (!min_heap.empty()) { int result, u, k; tie(result, u, k) = min_heap.top(); min_heap.pop(); if (k < 0 || (best.count(u) && best[u].count(k) && best[u][k] < result)) { continue; } if (u == dst) { return result; } for (const auto& kvp : adj[u]) { int v, w; tie(v, w) = kvp; if (!best.count(v) || !best[v].count(k - 1) || result + w < best[v][k - 1]) { best[v][k - 1] = result + w; min_heap.emplace(result + w, v, k - 1); } } } return -1; } };