[LeetCode] 787. Cheapest Flights Within K Stops K次转机内的最便宜航班

There are n cities connected by m flights. Each fight starts from city and arrives at v with a price w.

Now given all the cities and fights, together with starting city src and the destination dst, your task is to find the cheapest price from src to dst with up to k stops. If there is no such route, output -1.

Example 1:
Input: 
n = 3, edges = [[0,1,100],[1,2,100],[0,2,500]]
src = 0, dst = 2, k = 1
Output: 200
Explanation: 
The graph looks like this:

0
2
Example 2:
Input: 
n = 3, edges = [[0,1,100],[1,2,100],[0,2,500]]
src = 0, dst = 2, k = 0
Output: 500
Explanation: 
The graph looks like this:

0
2

Note:

  • The number of nodes n will be in range [1, 100], with nodes labeled from 0 to n - 1.
  • The size of flights will be in range [0, n * (n - 1) / 2].
  • The format of each flight will be (src, dst, price).
  • The price of each flight will be in the range [1, 10000].
  • k is in the range of [0, n - 1].
  • There will not be any duplicated flights or self cycles.

解法:Dijkstra's algorithm, 

Java:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class Solution {
    public int findCheapestPrice(int n, int[][] flights, int src, int dst, int K) {
        Map<Integer, Map<Integer, Integer>> prices = new HashMap<>();
        for (int[] f : flights) {
            if (!prices.containsKey(f[0])) prices.put(f[0], new HashMap<>());
            prices.get(f[0]).put(f[1], f[2]);
        }
        Queue<int[]> pq = new PriorityQueue<>((a, b) -> (Integer.compare(a[0], b[0])));
        pq.add(new int[] {0, src, k + 1});
        while (!pq.isEmpty()) {
            int[] top = pq.remove();
            int price = top[0];
            int city = top[1];
            int stops = top[2];
            if (city == dst) return price;
            if (stops > 0) {
                Map<Integer, Integer> adj = prices.getOrDefault(city, new HashMap<>());
                for (int a : adj.keySet()) {
                    pq.add(new int[] {price + adj.get(a), a, stops - 1});
                }
            }
        }
        return -1;
    }     
} 

Python:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
class Solution(object):
    def findCheapestPrice(self, n, flights, src, dst, K):
        """
        :type n: int
        :type flights: List[List[int]]
        :type src: int
        :type dst: int
        :type K: int
        :rtype: int
        """
        adj = collections.defaultdict(list)
        for u, v, w in flights:
            adj[u].append((v, w))
        best = collections.defaultdict(lambda: collections.defaultdict(lambda: float("inf")))
        min_heap = [(0, src, K+1)]
        while min_heap:
            result, u, k = heapq.heappop(min_heap)
            if k < 0 or best[u][k] < result:
                continue
            if u == dst:
                return result
            for v, w in adj[u]:
                if result+w < best[v][k-1]:
                    best[v][k-1] = result+w                   
                    heapq.heappush(min_heap, (result+w, v, k-1))
        return -1

Python:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
class Solution(object):
    def findCheapestPrice(self, n, flights, src, dst, K):
        """
        :type n: int
        :type flights: List[List[int]]
        :type src: int
        :type dst: int
        :type K: int
        :rtype: int
        """
        f = collections.defaultdict(dict)
        for a, b, p in flights:
            f[a][b] = p
        heap = [(0, src, k + 1)]
        while heap:
            p, i, k = heapq.heappop(heap)
            if i == dst:
                return p
            if k > 0:
                for j in f[i]:
                    heapq.heappush(heap, (p + f[i][j], j, k - 1))
        return -1  

C++:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
// Time:  O((|E| + |V|) * log|V|) = O(|E| * log|V|)
// Space: O(|E| + |V|) = O(|E|)
 
class Solution {
public:
    int findCheapestPrice(int n, vector<vector<int>>& flights, int src, int dst, int K) {
        using P = pair<int, int>;
        unordered_map<int, vector<P>> adj;
        for (const auto& flight : flights) {
            int u, v, w;
            tie(u, v, w) = make_tuple(flight[0], flight[1], flight[2]);
            adj[u].emplace_back(v, w);
        }
         
        unordered_map<int, unordered_map<int, int>> best;
        using T = tuple<int, int, int>;
        priority_queue<T, vector<T>, greater<T>> min_heap;
        min_heap.emplace(0, src, K + 1);
        while (!min_heap.empty()) {
            int result, u, k;
            tie(result, u, k) = min_heap.top(); min_heap.pop();
            if (k < 0 ||
                (best.count(u) && best[u].count(k) &&  best[u][k] < result)) {
                continue;
            }
            if (u == dst) {
                return result;
            }
            for (const auto& kvp : adj[u]) {
                int v, w;
                tie(v, w) = kvp;
                if (!best.count(v) ||
                    !best[v].count(k - 1) ||
                    result + w < best[v][k - 1]) {
                    best[v][k - 1] = result + w;
                    min_heap.emplace(result + w, v, k - 1);
                }
            }
        }
        return -1;
    }
};

    

 

All LeetCode Questions List 题目汇总

posted @   轻风舞动  阅读(1156)  评论(0编辑  收藏  举报
编辑推荐:
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
阅读排行:
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 【译】Visual Studio 中新的强大生产力特性
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构
点击右上角即可分享
微信分享提示