[LeetCode] 801. Minimum Swaps To Make Sequences Increasing 最少交换使得序列递增
We have two integer sequences A
and B
of the same non-zero length.
We are allowed to swap elements A[i]
and B[i]
. Note that both elements are in the same index position in their respective sequences.
At the end of some number of swaps, A
and B
are both strictly increasing. (A sequence is strictly increasing if and only if A[0] < A[1] < A[2] < ... < A[A.length - 1]
.)
Given A and B, return the minimum number of swaps to make both sequences strictly increasing. It is guaranteed that the given input always makes it possible.
Example: Input: A = [1,3,5,4], B = [1,2,3,7] Output: 1 Explanation: Swap A[3] and B[3]. Then the sequences are: A = [1, 3, 5, 7] and B = [1, 2, 3, 4] which are both strictly increasing.
Note:
A, B
are arrays with the same length, and that length will be in the range[1, 1000]
.A[i], B[i]
are integer values in the range[0, 2000]
.
给两个长度相等的数组A和B,可在任意位置i交换A[i]和B[i]的值,使得数组A和B变成严格递增的数组,求最少需要交换的次数。
解法:dp
Java:
class Solution { public int minSwap(int[] A, int[] B) { int swapRecord = 1, fixRecord = 0; for (int i = 1; i < A.length; i++) { if (A[i - 1] >= B[i] || B[i - 1] >= A[i]) { // In this case, the ith manipulation should be same as the i-1th manipulation // fixRecord = fixRecord; swapRecord++; } else if (A[i - 1] >= A[i] || B[i - 1] >= B[i]) { // In this case, the ith manipulation should be the opposite of the i-1th manipulation int temp = swapRecord; swapRecord = fixRecord + 1; fixRecord = temp; } else { // Either swap or fix is OK. Let's keep the minimum one int min = Math.min(swapRecord, fixRecord); swapRecord = min + 1; fixRecord = min; } } return Math.min(swapRecord, fixRecord); } }
Python:
class Solution(object): def minSwap(self, A, B): """ :type A: List[int] :type B: List[int] :rtype: int """ dp_no_swap, dp_swap = [0]*2, [1]*2 for i in xrange(1, len(A)): dp_no_swap[i%2], dp_swap[i%2] = float("inf"), float("inf") if A[i-1] < A[i] and B[i-1] < B[i]: dp_no_swap[i%2] = min(dp_no_swap[i%2], dp_no_swap[(i-1)%2]) dp_swap[i%2] = min(dp_swap[i%2], dp_swap[(i-1)%2]+1) if A[i-1] < B[i] and B[i-1] < A[i]: dp_no_swap[i%2] = min(dp_no_swap[i%2], dp_swap[(i-1)%2]) dp_swap[i%2] = min(dp_swap[i%2], dp_no_swap[(i-1)%2]+1) return min(dp_no_swap[(len(A)-1)%2], dp_swap[(len(A)-1)%2])
C++:
class Solution { public: int minSwap(vector<int>& A, vector<int>& B) { int n = A.size(); vector<int> swap(n, n), noSwap(n, n); swap[0] = 1; noSwap[0] = 0; for (int i = 1; i < n; ++i) { if (A[i] > A[i - 1] && B[i] > B[i - 1]) { swap[i] = swap[i - 1] + 1; noSwap[i] = noSwap[i - 1]; } if (A[i] > B[i - 1] && B[i] > A[i - 1]) { swap[i] = min(swap[i], noSwap[i - 1] + 1); noSwap[i] = min(noSwap[i], swap[i - 1]); } } return min(swap[n - 1], noSwap[n - 1]); } };
C++:
class Solution { public: int minSwap(vector<int>& A, vector<int>& B) { int n1 = 0, s1 = 1, n = A.size(); for (int i = 1; i < n; ++i) { int n2 = INT_MAX, s2 = INT_MAX; if (A[i - 1] < A[i] && B[i - 1] < B[i]) { n2 = min(n2, n1); s2 = min(s2, s1 + 1); } if (A[i - 1] < B[i] && B[i - 1] < A[i]) { n2 = min(n2, s1); s2 = min(s2, n1 + 1); } n1 = n2; s1 = s2; } return min(n1, s1); } };
类似题目:
Best Time to Buy and Sell Stock with Transaction Fee
All LeetCode Questions List 题目汇总