[LeetCode] 272. Closest Binary Search Tree Value II 最近的二叉搜索树的值 II
Given a non-empty binary search tree and a target value, find k values in the BST that are closest to the target.
Note:
- Given target value is a floating point.
- You may assume k is always valid, that is: k ≤ total nodes.
- You are guaranteed to have only one unique set of k values in the BST that are closest to the target.
Follow up:
Assume that the BST is balanced, could you solve it in less than O(n) runtime (where n = total nodes)?
Hint:
1. Consider implement these two helper functions:
i. getPredecessor(N), which returns the next smaller node to N.
ii. getSuccessor(N), which returns the next larger node to N.
2. Try to assume that each node has a parent pointer, it makes the problem much easier.
3. Without parent pointer we just need to keep track of the path from the root to the current node using a stack.
4. You would need two stacks to track the path in finding predecessor and successor node separately.
270. Closest Binary Search Tree Value 的拓展,270题只要找出离目标值最近的一个节点值,而这道题要找出离目标值最近的k个节点值。
解法1:Brute Force, 中序遍历或者其它遍历,同时维护一个大小为k的max heap。
Java:
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { public List<Integer> closestKValues(TreeNode root, double target, int k) { LinkedList<Integer> res = new LinkedList<>(); inOrderTraversal(root, target, k, res); return res; } private void inOrderTraversal(TreeNode root, double target, int k, LinkedList<Integer> res) { if (root == null) { return; } inOrderTraversal(root.left, target, k, res); if (res.size() < k) { res.add(root.val); } else if(res.size() == k) { if (Math.abs(res.getFirst() - target) > (Math.abs(root.val - target))) { res.removeFirst(); res.addLast(root.val); } else { return; } } inOrderTraversal(root.right, target, k, res); } }
Java:
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { private PriorityQueue<Integer> minPQ; private int count = 0; public List<Integer> closestKValues(TreeNode root, double target, int k) { minPQ = new PriorityQueue<Integer>(k); List<Integer> result = new ArrayList<Integer>(); inorderTraverse(root, target, k); // Dump the pq into result list for (Integer elem : minPQ) { result.add(elem); } return result; } private void inorderTraverse(TreeNode root, double target, int k) { if (root == null) { return; } inorderTraverse(root.left, target, k); if (count < k) { minPQ.offer(root.val); } else { if (Math.abs((double) root.val - target) < Math.abs((double) minPQ.peek() - target)) { minPQ.poll(); minPQ.offer(root.val); } } count++; inorderTraverse(root.right, target, k); } }
Java:
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { public List<Integer> closestKValues(TreeNode root, double target, int k) { PriorityQueue<Double> maxHeap = new PriorityQueue<Double>(k, new Comparator<Double>() { @Override public int compare(Double x, Double y) { return (int)(y-x); } }); Set<Integer> set = new HashSet<Integer>(); rec(root, target, k, maxHeap, set); return new ArrayList<Integer>(set); } private void rec(TreeNode root, double target, int k, PriorityQueue<Double> maxHeap, Set<Integer> set) { if(root==null) return; double diff = Math.abs(root.val-target); if(maxHeap.size()<k) { maxHeap.offer(diff); set.add(root.val); } else if( diff < maxHeap.peek() ) { double x = maxHeap.poll(); if(! set.remove((int)(target+x))) set.remove((int)(target-x)); maxHeap.offer(diff); set.add(root.val); } else { if(root.val > target) rec(root.left, target, k, maxHeap,set); else rec(root.right, target, k, maxHeap, set); return; } rec(root.left, target, k, maxHeap, set); rec(root.right, target, k, maxHeap, set); } }
Java: A time linear solution, The time complexity would be O(k + (n - k) logk). Space complexity is O(k).
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { public List<Integer> closestKValues(TreeNode root, double target, int k) { List<Integer> result = new ArrayList<>(); if (root == null) { return result; } Stack<Integer> precedessor = new Stack<>(); Stack<Integer> successor = new Stack<>(); getPredecessor(root, target, precedessor); getSuccessor(root, target, successor); for (int i = 0; i < k; i++) { if (precedessor.isEmpty()) { result.add(successor.pop()); } else if (successor.isEmpty()) { result.add(precedessor.pop()); } else if (Math.abs((double) precedessor.peek() - target) < Math.abs((double) successor.peek() - target)) { result.add(precedessor.pop()); } else { result.add(successor.pop()); } } return result; } private void getPredecessor(TreeNode root, double target, Stack<Integer> precedessor) { if (root == null) { return; } getPredecessor(root.left, target, precedessor); if (root.val > target) { return; } precedessor.push(root.val); getPredecessor(root.right, target, precedessor); } private void getSuccessor(TreeNode root, double target, Stack<Integer> successor) { if (root == null) { return; } getSuccessor(root.right, target, successor); if (root.val <= target) { return; } successor.push(root.val); getSuccessor(root.left, target, successor); } }
C++:
class Solution { public: vector<int> closestKValues(TreeNode* root, double target, int k) { vector<int> res; priority_queue<pair<double, int>> q; inorder(root, target, k, q); while (!q.empty()) { res.push_back(q.top().second); q.pop(); } return res; } void inorder(TreeNode *root, double target, int k, priority_queue<pair<double, int>> &q) { if (!root) return; inorder(root->left, target, k, q); q.push({abs(root->val - target), root->val}); if (q.size() > k) q.pop(); inorder(root->right, target, k, q); } };
类似题目:
[LeetCode] 270. Closest Binary Search Tree Value 最近的二叉搜索树的值
All LeetCode Questions List 题目汇总