[LeetCode] 64. Minimum Path Sum 最小路径和
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example:
Input: [ [1,3,1], [1,5,1], [4,2,1] ] Output: 7 Explanation: Because the path 1→3→1→1→1 minimizes the sum.
给定一个m x n 的含有非负整数的方格,从左上角移动到右下角,每次只能向下或者向右移动,找出最小的路径和。
解法:动态归化(Dynamic Programming),
State: dp[i][j],表示从(0, 0)到(i, j)最小的路径和
Function: dp[i][j] = min(dp[i][j-1], dp[i-1][j]) + grid[i][j]
Initialize: dp[0][0] = grid[0][0]
Return: dp[m - 1][n - 1]
Java:
public class Solution { public int minPathSum(int[][] grid) { if (grid == null || grid.length == 0 || grid[0].length == 0) { return 0; } int M = grid.length; int N = grid[0].length; int[][] dp = new int[M][N]; dp[0][0] = grid[0][0]; for (int i = 1; i < M; i++) { dp[i][0] = dp[i - 1][0] + grid[i][0]; } for (int i = 1; i < N; i++) { dp[0][i] = dp[0][i - 1] + grid[0][i]; } for (int i = 1; i < M; i++) { for (int j = 1; j < N; j++) { dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]; } } return dp[M - 1][N - 1]; } }
Python:
class Solution: # @param grid, a list of lists of integers # @return an integer def minPathSum(self, grid): m = len(grid); n = len(grid[0]) dp = [[0 for i in range(n)] for j in range(m)] dp[0][0] = grid[0][0] for i in range(1, n): dp[0][i] = dp[0][i-1] + grid[0][i] for i in range(1, m): dp[i][0] = dp[i-1][0] + grid[i][0] for i in range(1, m): for j in range(1, n): dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j] return dp[m-1][n-1]
Python:
class Solution: # @param grid, a list of lists of integers # @return an integer def minPathSum(self, grid): sum = list(grid[0]) for j in xrange(1, len(grid[0])): sum[j] = sum[j - 1] + grid[0][j] for i in xrange(1, len(grid)): sum[0] += grid[i][0] for j in xrange(1, len(grid[0])): sum[j] = min(sum[j - 1], sum[j]) + grid[i][j] return sum[-1]
Python: wo
class Solution(object): def minPathSum(self, grid): """ :type grid: List[List[int]] :rtype: int """ m, n = len(grid), len(grid[0]) dp = [[0] * n for i in xrange(m)] for i in xrange(m): for j in xrange(n): if i == 0 and j == 0: dp[i][j] = grid[i][j] elif i == 0: dp[i][j] = grid[i][j] + dp[i][j-1] elif j == 0: dp[i][j] = grid[i][j] + dp[i-1][j] else: dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j] return dp[-1][-1]
Python:
class Solution: """ @param grid: a list of lists of integers. @return: An integer, minimizes the sum of all numbers along its path """ def minPathSum(self, grid): for i in range(len(grid)): for j in range(len(grid[0])): if i == 0 and j > 0: grid[i][j] += grid[i][j-1] elif j == 0 and i > 0: grid[i][j] += grid[i-1][j] elif i > 0 and j > 0: grid[i][j] += min(grid[i-1][j], grid[i][j-1]) return grid[len(grid) - 1][len(grid[0]) - 1]
C++:
class Solution { public: /** * @param grid: a list of lists of integers. * @return: An integer, minimizes the sum of all numbers along its path */ int minPathSum(vector<vector<int> > &grid) { // write your code here int f[1000][1000]; if (grid.size() == 0 || grid[0].size() == 0) return 0; f[0][0] = grid[0][0]; for(int i = 1; i < grid.size(); i++) f[i][0] = f[i-1][0] + grid[i][0]; for(int i = 1; i < grid[0].size(); i++) f[0][i] = f[0][i-1] + grid[0][i]; for(int i = 1; i < grid.size(); i++) for(int j = 1; j < grid[0].size(); j++) f[i][j] = min(f[i-1][j], f[i][j-1]) + grid[i][j]; return f[grid.size()-1][grid[0].size()-1]; } };
类似题目:
[LeetCode] 174. Dungeon Game 地牢游戏
All LeetCode Questions List 题目汇总