POJ 2785:4 Values whose Sum is 0 二分
4 Values whose Sum is 0
Time Limit: 15000MS | Memory Limit: 228000K | |
Total Submissions: 18221 | Accepted: 5363 | |
Case Time Limit: 5000MS |
Description
The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .
Input
The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 228 ) that belong respectively to A, B, C and D .
Output
For each input file, your program has to write the number quadruplets whose sum is zero.
Sample Input
6 -45 22 42 -16 -41 -27 56 30 -36 53 -37 77 -36 30 -75 -46 26 -38 -10 62 -32 -54 -6 45
Sample Output
5
Hint
Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).
题意是给出4列数,从每一列中挑选一个数字,问有多少种方法使这四个数的和为0。
求出每两列的数的和,再二分查找。
代码:
#include <iostream> #include <algorithm> #include <cmath> #include <vector> #include <string> #include <cstring> #include <map> #pragma warning(disable:4996) using namespace std; int a[4005],b[4005],c[4005],d[4005]; int sum1[4005*4005],sum2[4005*4005]; int n; int main() { //freopen("i.txt","r",stdin); //freopen("o.txt","w",stdout); int i,j; scanf("%d",&n); for(i=1;i<=n;i++) { scanf("%d%d%d%d",a+i,b+i,c+i,d+i); } int num1=0; for(i=1;i<=n;i++) { for(j=1;j<=n;j++) { sum1[++num1] = -(a[i]+b[j]); sum2[num1] = (c[i]+d[j]); } } sort(sum1+1,sum1+1+num1); sort(sum2+1,sum2+1+num1); int ans=0; sum1[0]= -268435456*2 - 1; sum1[num1+1] = 268435456*2 + 1; for(i=1;i<=num1;i++) { int left = 0; int right = num1+1; int mid; while(left<right) { mid=(left+right)/2; if(sum2[i]<=sum1[mid]) { right=mid; } else { left= mid+1; } } while(sum2[i]==sum1[right]&&right<=num1) { ans++; right++; } } printf("%d\n",ans); //system("pause"); return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。