51nod 1438:方阵与完全平方数
如果一个由正整数组成的n*n的方阵,满足以下条件:
1,每个数字各不相同
2,每行以及每列的和,都是互不相同的完全平方数
我们称这种方阵为超级完全平方数方阵。
输入n,输出一个n*n的超级完全平方数方阵。如果存在多个方阵满足条件,输出将所有元素按行、列顺序排列后字典序最小的一个答案。例如
n=3时,下面两个方阵都符合条件
1 2 6
3 4 9
21 30 49
21 30 49
3 4 9
1 2 6
按行、列顺序排列后,第一个方阵表示为[1, 2, 6, 3, 4, 9, 21, 30, 49],第二个方阵表示为[21, 30, 49, 3, 4, 9, 1, 2, 6]。第一个方阵字典序更小一些。
如果不存在这样的方阵,输出No Solution。
Input
仅一行,为一个正整数n。(1 <= n <= 64)
Output
输出n行,每行为n个整数,之间用空格隔开,表示所求的n*n方阵。或者,输出No Solution。
Input示例
3
Output示例
1 2 6 3 4 9 21 30 49
真真正正地被虐了一下午。。。其实本质上就是一个dfs,但是做起来是真的麻烦啊,各种错误百出的。
官方题解:
首先,n=1时无解。
接下来处理n>=2的情况。由于题目要求字典序最小的方阵,使用贪心算法的思想,不难发现,每一行每一列其实只需要依靠最后一个数字(最右边和最下边的数字)就足够使得该行该列的和达到一个没有使用过的完全平方数。因此,按照题目中对方阵序列化的次序,对无关紧要的位置都尽力使用最小的数字;每当到达一行的最后一个位置,或者最后一行的时候,再去寻找符合题目要求的最后一个数字。这样做直到右下角的最后一个位置。
此时,最后一行和最后一列都需要满足和为完全平方数的条件。搜索最小的符合条件的数字。如果找不到解,就加大倒数第二个位置的数字(因为这样做对字典序的影响最小),再重新搜索最后一个位置。
怎样快速发现最后一个位置找不到解呢?不难发现,最后一列的和必定小于最后一行的和,设它们的差为d。我们可以枚举较小的一个完全平方数x,如果发现x的下一个完全平方数与x的差已经大于d,则在最后一个位置无解。
#include <iostream> #include <algorithm> #include <cmath> #include <vector> #include <string> #include <cstring> #include <map> #pragma warning(disable:4996) using namespace std; int n,wang=0; int square_flag[10000]; int val_flag[64005]; long long val[70][70]; int sear(int su) { long long i; for (i = 2; ; i++) { if (i*i >= su && ((i<=9999&&square_flag[i]==0)||(i>9999))) return i; } } void dfs(int x,int y,long long value) { if (wang==1) { return; } if (x == n&&y == n) { long long i, j, h, k, sum2 = 0, sum3 = 0; for (i = 1; i <= n - 1; i++) { sum2 += val[i][y]; } for (i = 1; i <= n - 1; i++) { sum3 += val[x][i]; } for (i = 2;; i++) { if ((i <= 9999 && square_flag[i] == 1))continue; double g = sqrt((double)(i*i - sum2 + sum3)); if (i*i - sum2 > 0 && g == (long long)g && ((g<=9999)&&(square_flag[(long long)g] == 0)||g>9999)) { val[x][y] = i*i - sum2; for (h = 1; h <= n; h++) { for (k = 1; k <= n; k++) { cout << val[h][k]<< " "; } cout << endl; } wang = 1; return; } long long wa = sum3 - sum2; if ((i + 1)*(i + 1) - (i*i) > wa) { long long op, sum_op = 0; for (op = 1; op <= n; op++) { sum_op += val[op][y - 1]; } square_flag[(long long)sqrt((double)sum_op)] = 0; dfs(x,y-1,value+1); return; } } } else if (x == n) { long long i, sum2 = 0; for (i = 1; i <= n - 1; i++) { sum2 += val[i][y]; } i = sear(sum2 + value); while (val_flag[i*i - sum2] == 1||square_flag[i]==1) { i++; } val[x][y] = i*i - sum2; val_flag[i*i - sum2] = 1; square_flag[i] = 1; dfs(x, y+1, value); } else if (y == n) { long long i,sum2=0; for (i = 1; i <= n - 1; i++) { sum2 += val[x][i]; } i = sear(sum2 + value); while (val_flag[i*i - sum2] == 1) { i++; } val[x][y] = i*i - sum2; val_flag[i*i - sum2] = 1; square_flag[i] = 1; dfs(x + 1, 1, value); } else { val[x][y] = value; val_flag[value] = 1; if (val_flag[value+1] == 0) { dfs(x, y + 1, value+1); } else { while (val_flag[value+1] == 1) { value++; } dfs(x, y + 1, value+1); } } } int main() { scanf("%d", &n); if (n == 1) { cout << "No Solution" << endl; } else { memset(square_flag,0,sizeof(square_flag)); memset(val_flag, 0, sizeof(val_flag)); dfs(1, 1, 1); } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。