Stay Hungry,Stay Foolish!

RAG From Scratch

RAG From Scratch

https://github.com/langchain-ai/rag-from-scratch

 

LLMs are trained on a large but fixed corpus of data, limiting their ability to reason about private or recent information. Fine-tuning is one way to mitigate this, but is often not well-suited for facutal recall and can be costly. Retrieval augmented generation (RAG) has emerged as a popular and powerful mechanism to expand an LLM's knowledge base, using documents retrieved from an external data source to ground the LLM generation via in-context learning. These notebooks accompany a video playlist that builds up an understanding of RAG from scratch, starting with the basics of indexing, retrieval, and generation. rag_detail_v2

 

 

posted @   lightsong  阅读(0)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· PowerShell开发游戏 · 打蜜蜂
· 在鹅厂做java开发是什么体验
· 百万级群聊的设计实践
· WPF到Web的无缝过渡:英雄联盟客户端的OpenSilver迁移实战
· 永远不要相信用户的输入:从 SQL 注入攻防看输入验证的重要性
历史上的今天:
2024-02-25 C - Many Replacement
2019-02-25 express session 和 socketio session关联
2018-02-25 Git 命令解释优秀博文转摘
2015-02-25 Cross-site Scripting (XSS) 阅读笔记
千山鸟飞绝,万径人踪灭
点击右上角即可分享
微信分享提示