AutoGen
AutoGen
https://microsoft.github.io/autogen/0.2/docs/Getting-Started
AutoGen is an open-source programming framework for building AI agents and facilitating cooperation among multiple agents to solve tasks. AutoGen aims to provide an easy-to-use and flexible framework for accelerating development and research on agentic AI, like PyTorch for Deep Learning. It offers features such as agents that can converse with other agents, LLM and tool use support, autonomous and human-in-the-loop workflows, and multi-agent conversation patterns.
Main Features
- AutoGen enables building next-gen LLM applications based on multi-agent conversations with minimal effort. It simplifies the orchestration, automation, and optimization of a complex LLM workflow. It maximizes the performance of LLM models and overcomes their weaknesses.
- It supports diverse conversation patterns for complex workflows. With customizable and conversable agents, developers can use AutoGen to build a wide range of conversation patterns concerning conversation autonomy, the number of agents, and agent conversation topology.
- It provides a collection of working systems with different complexities. These systems span a wide range of applications from various domains and complexities. This demonstrates how AutoGen can easily support diverse conversation patterns.
AutoGen is powered by collaborative research studies from Microsoft, Penn State University, and University of Washington.
Agents
https://microsoft.github.io/autogen/0.2/docs/tutorial
Agents
In AutoGen, an agent is an entity that can send and receive messages to and from other agents in its environment. An agent can be powered by models (such as a large language model like GPT-4), code executors (such as an IPython kernel), human, or a combination of these and other pluggable and customizable components.
An example of such agents is the built-in
ConversableAgent
which supports the following components:
- A list of LLMs
- A code executor
- A function and tool executor
- A component for keeping human-in-the-loop
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】博客园社区专享云产品让利特惠,阿里云新客6.5折上折
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· DeepSeek “源神”启动!「GitHub 热点速览」
· 微软正式发布.NET 10 Preview 1:开启下一代开发框架新篇章
· C# 集成 DeepSeek 模型实现 AI 私有化(本地部署与 API 调用教程)
· DeepSeek R1 简明指南:架构、训练、本地部署及硬件要求
· NetPad:一个.NET开源、跨平台的C#编辑器
2020-12-21 Classification report of sklearn
2020-12-21 Confusion Matrix of sklearn
2019-12-21 jQuery TE