Linux下的USB总线驱动(03)——USB鼠标驱动 usbmouse.c
USB鼠标驱动 usbmouse.c
原文链接:http://www.linuxidc.com/Linux/2012-12/76197p7.htm
drivers/hid/usbhid/usbmouse.c
下面我们分析下USB鼠标驱动,鼠标输入HID类型,其数据传输采用中断URB,鼠标端点类型为IN。我们先看看这个驱动的模块加载部分。
- static int __init usb_mouse_init(void)
- {
- int retval = usb_register(&usb_mouse_driver);
- if (retval == 0)
- printk(KERN_INFO KBUILD_MODNAME ": " DRIVER_VERSION ":"
- DRIVER_DESC "\n");
- return retval;
- }
模块加载部分仍然是调用usb_register注册USB驱动,我们跟踪看看被注册的usb_mouse_driver
- static struct usb_driver usb_mouse_driver = {
- .name = "usbmouse", //驱动名
- .probe = usb_mouse_probe,
- .disconnect = usb_mouse_disconnect,
- .id_table = usb_mouse_id_table, //支持项
- };
关于设备支持项我们前面已经讨论过了
- static struct usb_device_id usb_mouse_id_table [] = {
- { USB_INTERFACE_INFO(USB_INTERFACE_CLASS_HID, USB_INTERFACE_SUBCLASS_BOOT,
- USB_INTERFACE_PROTOCOL_MOUSE) },
- { } /* Terminating entry */
- };
- MODULE_DEVICE_TABLE (usb, usb_mouse_id_table);
再细细看看USB_INTERFACE_INFO宏的定义
- /**
- * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
- * @cl: bInterfaceClass value
- * @sc: bInterfaceSubClass value
- * @pr: bInterfaceProtocol value
- *
- * This macro is used to create a struct usb_device_id that matches a
- * specific class of interfaces.
- */
- #define USB_INTERFACE_INFO(cl, sc, pr) \
- .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
- .bInterfaceClass = (cl), \
- .bInterfaceSubClass = (sc), \
- .bInterfaceProtocol = (pr)
根据宏,我们知道,我们设置的支持项包括接口类,接口子类,接口协议三个匹配项。
主要看看usb_driver中定义的probe函数
- static int usb_mouse_probe(struct usb_interface *intf, const struct usb_device_id *id)
- {
- struct usb_device *dev = interface_to_usbdev(intf);//由接口获取usb_dev
- struct usb_host_interface *interface;
- struct usb_endpoint_descriptor *endpoint;
- struct usb_mouse *mouse; //该驱动私有结构体
- struct input_dev *input_dev; //输入结构体
- int pipe, maxp;
- int error = -ENOMEM;
- interface = intf->cur_altsetting; //获取设置
- if (interface->desc.bNumEndpoints != 1) //鼠标端点只有1个
- return -ENODEV;
- endpoint = &interface->endpoint[0].desc; //获取端点描述符
- if (!usb_endpoint_is_int_in(endpoint)) //检查该端点是否是中断输入端点
- return -ENODEV;
- pipe = usb_rcvintpipe(dev, endpoint->bEndpointAddress); //建立中断输入端点
- maxp = usb_maxpacket(dev, pipe, usb_pipeout(pipe)); //端点能传输的最大数据包(Mouse为4个)
- mouse = kzalloc(sizeof(struct usb_mouse), GFP_KERNEL); //分配usb_mouse结构体
- input_dev = input_allocate_device(); //分配input设备空间
- if (!mouse || !input_dev)
- goto fail1;
- mouse->data = usb_alloc_coherent(dev, 8, GFP_ATOMIC, &mouse->data_dma); //分配缓冲区
- if (!mouse->data)
- goto fail1;
- mouse->irq = usb_alloc_urb(0, GFP_KERNEL); //分配urb
- if (!mouse->irq)
- goto fail2;
- mouse->usbdev = dev; //填充mouse的usb_device结构体
- mouse->dev = input_dev; //填充mouse的input结构体
- if (dev->manufacturer) //复制厂商ID
- strlcpy(mouse->name, dev->manufacturer, sizeof(mouse->name));
- if (dev->product) { //复制产品ID
- if (dev->manufacturer)
- strlcat(mouse->name, " ", sizeof(mouse->name));
- strlcat(mouse->name, dev->product, sizeof(mouse->name));
- }
- if (!strlen(mouse->name))
- snprintf(mouse->name, sizeof(mouse->name),
- "USB HIDBP Mouse %04x:%04x",
- le16_to_cpu(dev->descriptor.idVendor),
- le16_to_cpu(dev->descriptor.idProduct));
- usb_make_path(dev, mouse->phys, sizeof(mouse->phys));
- strlcat(mouse->phys, "/input0", sizeof(mouse->phys)); //获取usb_mouse的设备节点
- input_dev->name = mouse->name; //将鼠标名赋给内嵌input结构体
- input_dev->phys = mouse->phys; //将鼠标设备节点名赋给内嵌input结构体
- usb_to_input_id(dev, &input_dev->id); //将usb_driver的支持项拷贝给input
- input_dev->dev.parent = &intf->dev;
- input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_REL); //支持按键事件和相对坐标事件
- input_dev->keybit[BIT_WORD(BTN_MOUSE)] = BIT_MASK(BTN_LEFT) |
- BIT_MASK(BTN_RIGHT) | BIT_MASK(BTN_MIDDLE); //表明按键值包括左键、中键和右键
- input_dev->relbit[0] = BIT_MASK(REL_X) | BIT_MASK(REL_Y); //表明相对坐标包括X坐标和Y坐标
- input_dev->keybit[BIT_WORD(BTN_MOUSE)] |= BIT_MASK(BTN_SIDE) |
- BIT_MASK(BTN_EXTRA); //表明除了左键、右键和中键,还支持其他按键
- input_dev->relbit[0] |= BIT_MASK(REL_WHEEL); //表明还支持中键滚轮的滚动值
- input_set_drvdata(input_dev, mouse); //将mouse设为input的私有数据
- input_dev->open = usb_mouse_open; //input设备的open操作函数
- input_dev->close = usb_mouse_close;
- usb_fill_int_urb(mouse->irq, dev, pipe, mouse->data,
- (maxp > 8 ? 8 : maxp),
- usb_mouse_irq, mouse, endpoint->bInterval); //填充urb
- mouse->irq->transfer_dma = mouse->data_dma;
- mouse->irq->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; //使用transfer_dma
- error = input_register_device(mouse->dev); //注册input设备
- if (error)
- goto fail3;
- usb_set_intfdata(intf, mouse);
- return 0;
- fail3:
- usb_free_urb(mouse->irq);
- fail2:
- usb_free_coherent(dev, 8, mouse->data, mouse->data_dma);
- fail1:
- input_free_device(input_dev);
- kfree(mouse);
- return error;
- }
在探讨probe实现的功能时,我们先看看urb填充函数usb_fill_int_urb
- /**
- * usb_fill_int_urb - macro to help initialize a interrupt urb
- * @urb: pointer to the urb to initialize.
- * @dev: pointer to the struct usb_device for this urb.
- * @pipe: the endpoint pipe
- * @transfer_buffer: pointer to the transfer buffer
- * @buffer_length: length of the transfer buffer
- * @complete_fn: pointer to the usb_complete_t function
- * @context: what to set the urb context to.
- * @interval: what to set the urb interval to, encoded like
- * the endpoint descriptor's bInterval value.
- *
- * Initializes a interrupt urb with the proper information needed to submit
- * it to a device.
- *
- * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
- * encoding of the endpoint interval, and express polling intervals in
- * microframes (eight per millisecond) rather than in frames (one per
- * millisecond).
- *
- * Wireless USB also uses the logarithmic encoding, but specifies it in units of
- * 128us instead of 125us. For Wireless USB devices, the interval is passed
- * through to the host controller, rather than being translated into microframe
- * units.
- */
- static inline void usb_fill_int_urb(struct urb *urb,
- struct usb_device *dev,
- unsigned int pipe,
- void *transfer_buffer,
- int buffer_length,
- usb_complete_t complete_fn,
- void *context,
- int interval)
- {
- urb->dev = dev;
- urb->pipe = pipe;
- urb->transfer_buffer = transfer_buffer;
- urb->transfer_buffer_length = buffer_length;
- urb->complete = complete_fn;
- urb->context = context;
- if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER)
- urb->interval = 1 << (interval - 1);
- else
- urb->interval = interval;
- urb->start_frame = -1;
- }
其实probe主要是初始化usb设备和input设备,终极目标是为了完成urb的提交和input设备的注册。由于注册为input设备类型,那么当用户层open打开设备时候,最终会调用input中的open实现打开,我们看看input中open的实现
- static int usb_mouse_open(struct input_dev *dev)
- {
- struct usb_mouse *mouse = input_get_drvdata(dev); //获取私有数据
- mouse->irq->dev = mouse->usbdev; //获取utb指针
- if (usb_submit_urb(mouse->irq, GFP_KERNEL)) //提交urb
- return -EIO;
- return 0;
- }
当用户层open打开这个USB鼠标后,我们就已经将urb提交给了USB core,那么根据USB数据处理流程知道,当处理完毕后,USB core会通知USB设备驱动程序,这里我们是响应中断服务程序,这就相当于该URB的回调函数。我们在提交urb时候定义了中断服务程序 usb_mouse_irq,我们跟踪看看
- static void usb_mouse_irq(struct urb *urb)
- {
- struct usb_mouse *mouse = urb->context;
- signed char *data = mouse->data;
- struct input_dev *dev = mouse->dev;
- int status;
- switch (urb->status) {
- case 0: /* success */
- break;
- case -ECONNRESET: /* unlink */
- case -ENOENT:
- case -ESHUTDOWN:
- return;
- /* -EPIPE: should clear the halt */
- default: /* error */
- goto resubmit; //数据处理没成功,重新提交urb
- }
- input_report_key(dev, BTN_LEFT, data[0] & 0x01); //左键
- input_report_key(dev, BTN_RIGHT, data[0] & 0x02); //
- input_report_key(dev, BTN_MIDDLE, data[0] & 0x04); //
- input_report_key(dev, BTN_SIDE, data[0] & 0x08); //
- input_report_key(dev, BTN_EXTRA, data[0] & 0x10); //
- input_report_rel(dev, REL_X, data[1]); //鼠标的水平位移
- input_report_rel(dev, REL_Y, data[2]); //鼠标的垂直位移
- input_report_rel(dev, REL_WHEEL, data[3]); //鼠标滚轮的滚动值
- input_sync(dev); //同步事件,完成一次上报
- resubmit:
- status = usb_submit_urb (urb, GFP_ATOMIC); //再次提交urb,等待下次响应
- if (status)
- err ("can't resubmit intr, %s-%s/input0, status %d",
- mouse->usbdev->bus->bus_name,
- mouse->usbdev->devpath, status);
- }
根据上面的中断服务程序,我们应该知道,系统是周期性地获取鼠标的事件信息,因此在URB回调函数的末尾再次提交URB请求块,这样又会调用新的回调函数,周而复始。在回调函数中提交URB只能是GFP_ATOMIC优先级,因为URB回调函数运行于中断上下文中禁止导致睡眠的行为。而在提交URB 过程中可能会需要申请内存、保持信号量,这些操作或许会导致USB内核睡眠。
最后我们再看看这个驱动的私有数据mouse的定义
- struct usb_mouse {
- char name[128]; //名字
- char phys[64]; //设备节点
- struct usb_device *usbdev; //内嵌usb_device设备
- struct input_dev *dev; //内嵌input_dev设备
- struct urb *irq; //urb结构体
- signed char *data; //transfer_buffer缓冲区
- dma_addr_t data_dma; //transfer _dma缓冲区
- };
在上面这个结构体中,每一个成员的作用都应该很清楚了,尤其最后两个的使用区别和作用,前面也已经说过。
如果最终需要测试这个USB鼠标驱动,需要在内核中配置USB支持、对HID接口的支持、对OHCI HCD驱动的支持。另外,将驱动移植到开发板之后,由于采用的是input设备模型,所以还需要开发板带LCD屏才能测试。
posted on 2013-03-09 17:05 lightsalt2011 阅读(902) 评论(0) 编辑 收藏 举报