【POJ1637】Sightseeing tour

 

Description

 

The city executive board in Lund wants to construct a sightseeing tour by bus in Lund, so that tourists can see every corner of the beautiful city. They want to construct the tour so that every street in the city is visited exactly once. The bus should also start and end at the same junction. As in any city, the streets are either one-way or two-way, traffic rules that must be obeyed by the tour bus. Help the executive board and determine if it's possible to construct a sightseeing tour under these constraints.

 

Input

 

On the first line of the input is a single positive integer n, telling the number of test scenarios to follow. Each scenario begins with a line containing two positive integers m and s, 1 <= m <= 200,1 <= s <= 1000 being the number of junctions and streets, respectively. The following s lines contain the streets. Each street is described with three integers, xi, yi, and di, 1 <= xi,yi <= m, 0 <= di <= 1, where xi and yi are the junctions connected by a street. If di=1, then the street is a one-way street (going from xi to yi), otherwise it's a two-way street. You may assume that there exists a junction from where all other junctions can be reached.

 

Output

 

For each scenario, output one line containing the text "possible" or "impossible", whether or not it's possible to construct a sightseeing tour.

 

Sample Input

 

4
5 8
2 1 0
1 3 0
4 1 1
1 5 0
5 4 1
3 4 0
4 2 1
2 2 0
4 4
1 2 1
2 3 0
3 4 0
1 4 1
3 3
1 2 0
2 3 0
3 2 0
3 4
1 2 0
2 3 1
1 2 0
3 2 0

 

Sample Output

 

possible
impossible
impossible
possible

 

 

题意:

  给出一张既有单向边又有双向边的图,给其中的双向边定向之后使得图构成欧拉回路,问是否存在可行方案。

 

分析:

对于无向边,我们不知道方向,就随便定向,然后再想想怎么修改。

定完向之后,求所有点的出度与入度,如果任意一个点出度和入度的差为奇数,那么图将无法构成欧拉回路。

(先假设,一个点的出度和入度分别为out和in,如果出度和入度的差|out-in|为奇数,这时有a条连向这个点的边改变了方向,b条从这个点向外连的边改变了方向,那么它的入度就变为了in-a+b,出度变为了out-b+a,出度和入度的差|out-b+a-in+a-b|=|out-in+2a-2b|还是奇数,所以无论如何将边重定向,图都无法构成欧拉回路。)

对于图中的一个点,如果in>out,则说明需要有(in - out)/2条出边需要改变方向,如果in<out,则说明需要有(out - in)/2条入边需要改变方向。而对于无向边(u,v),定义其方向为u->v,那么它将有可能被改为v->u。

剩下的问题用最大流就能解决,对于每个in>out的节点,从源向这个点连一条流量为(in-out)/2的边,对于每个in<out的点,从这个点向汇连一条流量为(out-in)/2的边。而对于每条被定向为u->v的无向边,从v向u连接一条流量为1的边,这条边被流过则说明(u,v)被改变了方向。

跑一遍最大流,如果最大的流量等于与汇相连的边的流量总和,则说明在将一些边重定向后可以满足所有点出度与入度相等,即可以构成欧拉回路。

 

代码:

  1 #include <cstdio>
  2 #include <cstring>
  3 
  4 const int maxn = 300;
  5 const int maxm = 3000;
  6 
  7 int et[maxm], ep[maxm], ef[maxm];
  8 int last[maxn], en;
  9 int p1, p2, dir;
 10 int t, n, m, sta, end, ans, ind[maxn];
 11 
 12 inline void insert(int from, int to, int flow)
 13 {
 14     en++;
 15     et[en] = to;
 16     ef[en] = flow;
 17     ep[en] = last[from];
 18     last[from] = en;
 19     en++;
 20     et[en] = from;
 21     ef[en] = 0;
 22     ep[en] = last[to];
 23     last[to] = en;
 24 }
 25 
 26 inline int min(int a, int b)
 27 {
 28     return a < b ? a : b;
 29 }
 30 
 31 int gap[maxn], dis[maxn], cur[maxn];
 32 
 33 int sap(int now, int flow)
 34 {
 35     if (now == end)
 36     {
 37         return flow;
 38     }
 39     int ret = 0, tmp;
 40     for (int e = cur[now]; e; cur[now] = e = ep[e])
 41     {
 42         if (et[e] > 0 && dis[now] == dis[et[e]] + 1)
 43         {
 44             tmp = sap(et[e], min(flow - ret, ef[e]));
 45             ret += tmp;
 46             ef[e] -= tmp;
 47             ef[e ^ 1] += tmp;
 48             if (ret == flow)
 49             {
 50                 return ret;
 51             }
 52         }
 53     }
 54     cur[now] = last[now];
 55     if (--gap[dis[now]] <= 0)
 56     {
 57         dis[sta] = end + 1;
 58     }
 59     ++gap[++dis[now]];
 60     return ret;
 61 }
 62 
 63 int maxflow()
 64 {
 65     memset(gap, 0, sizeof(gap));
 66     memset(dis, 0, sizeof(dis));
 67     int flow = 0;
 68     gap[0] = end;
 69     for (int i = 1; i <= end; i++)
 70     {
 71         cur[i] = last[i];
 72     }
 73     while (dis[sta] <= end)
 74     {
 75         flow += sap(sta, 2147483647);
 76     }
 77     return flow;
 78 }
 79 
 80 int main()
 81 {
 82     scanf("%d", &t);
 83     while (t--)
 84     {
 85         memset(last, 0, sizeof(last));
 86         memset(ind, 0, sizeof(ind));
 87         en = 1;
 88         ans = 0;
 89         scanf("%d%d", &n, &m);
 90         sta = n + 1;
 91         end = sta + 1;
 92         for (int i = 0; i < m; i++)
 93         {
 94             scanf("%d%d%d", &p1, &p2, &dir);
 95             ind[p1]--;
 96             ind[p2]++;
 97             if (!dir)
 98             {
 99                 insert(p2, p1, 1);
100             }
101         }
102         bool flag = 1;
103         for (int i = 1; i <= n; i++)
104         {
105             if (ind[i] % 2 > 0)
106             {
107                 flag = 0;
108                 break;
109             }
110             if (ind[i] > 0)
111             {
112                 insert(sta, i, ind[i] / 2);
113             }
114             if (ind[i] < 0)
115             {
116                 insert(i, end, -ind[i] / 2);
117                 ans += -ind[i] / 2;
118             }
119         }
120         if (flag == 0)
121         {
122             puts("impossible");
123         }
124         else
125         {
126             puts(maxflow() == ans ? "possible" : "impossible");
127         }
128     }
129 }

 

posted @ 2015-06-15 21:29  Lightning34  阅读(154)  评论(0编辑  收藏  举报