A1053. Path of Equal Weight (30)
Given a non-empty tree with root R, and with weight Wi assigned to each tree node Ti. The weight of a path from R to L is defined to be the sum of the weights of all the nodes along the path from R to any leaf node L.
Now given any weighted tree, you are supposed to find all the paths with their weights equal to a given number. For example, let's consider the tree showed in Figure 1: for each node, the upper number is the node ID which is a two-digit number, and the lower number is the weight of that node. Suppose that the given number is 24, then there exists 4 different paths which have the same given weight: {10 5 2 7}, {10 4 10}, {10 3 3 6 2} and {10 3 3 6 2}, which correspond to the red edges in Figure 1.
Figure 1
Input Specification:
Each input file contains one test case. Each case starts with a line containing 0 < N <= 100, the number of nodes in a tree, M (< N), the number of non-leaf nodes, and 0 < S < 230, the given weight number. The next line contains N positive numbers where Wi (<1000) corresponds to the tree node Ti. Then M lines follow, each in the format:
ID K ID[1] ID[2] ... ID[K]
where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID's of its children. For the sake of simplicity, let us fix the root ID to be 00.
Output Specification:
For each test case, print all the paths with weight S in non-increasing order. Each path occupies a line with printed weights from the root to the leaf in order. All the numbers must be separated by a space with no extra space at the end of the line.
Note: sequence {A1, A2, ..., An} is said to be greater than sequence {B1, B2, ..., Bm} if there exists 1 <= k < min{n, m} such that Ai = Bifor i=1, ... k, and Ak+1 > Bk+1.
Sample Input:
20 9 24 10 2 4 3 5 10 2 18 9 7 2 2 1 3 12 1 8 6 2 2 00 4 01 02 03 04 02 1 05 04 2 06 07 03 3 11 12 13 06 1 09 07 2 08 10 16 1 15 13 3 14 16 17 17 2 18 19
Sample Output:
10 5 2 7 10 4 10 10 3 3 6 2 10 3 3 6 2
1 #include <stdio.h> 2 #include <stdlib.h> 3 #include <iostream> 4 #include <string.h> 5 #include <math.h> 6 #include <algorithm> 7 #include <string> 8 #include <stack> 9 #include <queue> 10 using namespace std; 11 const int maxn=110; 12 int n,m,s; 13 struct node{ 14 int weight; 15 vector<int> child; 16 }Node[maxn]; 17 18 int path[maxn]; 19 bool cmp(int a,int b) 20 { 21 return Node[a].weight>Node[b].weight; 22 } 23 void DFS(int root,int num,int sum) 24 { 25 if(sum>s)return; 26 if(sum==s) 27 { 28 if(Node[root].child.size()==0) 29 { 30 //打印 31 for(int i=0;i<num;i++) 32 { 33 printf("%d",Node[path[i]].weight); 34 if(i<num-1)printf(" "); 35 else printf("\n"); 36 } 37 }else 38 { 39 return; 40 } 41 } 42 for(int i=0;i<Node[root].child.size();i++) 43 { 44 int child=Node[root].child[i]; 45 path[num]=child; 46 DFS(child,num+1,sum+Node[child].weight); 47 } 48 } 49 int main(){ 50 scanf("%d %d %d",&n,&m,&s); 51 for(int i=0;i<n;i++) 52 { 53 int tmp; 54 scanf("%d",&tmp); 55 Node[i].weight=tmp; 56 } 57 for(int i=0;i<m;i++) 58 { 59 int id,k,child; 60 scanf("%d %d",&id,&k); 61 for(int j=0;j<k;j++) 62 { 63 scanf("%d",&child); 64 Node[id].child.push_back(child); 65 } 66 sort(Node[id].child.begin(),Node[id].child.end(),cmp); 67 } 68 path[0]=0; 69 DFS(0,1,Node[0].weight); 70 return 0; 71 }