三分模板

三分模板

三分整数模板

整数的三分可能具有不确定性,可以通过改变while循环的条件\(while(l + 5 < r)\)来缩小范围,再通过

for(int i = l; i <= r; i++)
      ans = min(ans, calc(i));
for(int i = 1; i <= r; i++)
      ans = max(ans, calc(i));

//更新方式改成
l = lmid
r = rmid

来确定答案,下面的模板仅供参考,如果\(WA\)了,可以考虑通过这种方式改进。

凸函数的极大值

ll l, r;
while(l < r) {
    ll lmid = l + (r - l) / 3;
    ll rmid = r - (r - l) / 3;
    if(calc(lmid) <= calc(rmid))	l = lmid + 1;
    else r = rmid - 1;
}
printf("%lld\n", max(calc(l), calc(r)));

凹函数的极小值

ll l, r;
while(l < r) {
    ll lmid = l + (r - l) / 3;
    ll rmid = r - (r - l) / 3;
    if(calc(rmid) >= calc(lmid))	r = mid - 1;
    else 	l = mid + 1;
}
printf("%lld\n", min(calc(l), calc(r)));

三分小数模板

凸函数的极大值

double l, r;
for(int i = 0; i < 300; i++) {
    double lmid = l + (r - l) / 3;
    double rmid = r - (r - l) / 3;
    if(calc(lmid) <= calc(rmid))	l = lmid;
    else 	r = rmid;
}
printf("%.6f\n", calc(l));

凹函数的极小值

double l, r;
for(int i = 0; i < 300; i++) {
    double lmid = l + (r - l) / 3;
    double rmid = r - (r - l) / 3;
    if(calc(rmid) >= calc(lmid))	r = rmid;
    else 	l = lmid;
}
printf("%.6f\n", calc(l));
posted @ 2020-05-20 22:08  lifehappy  阅读(1406)  评论(0编辑  收藏  举报