贪心 CF 651B
There are n pictures delivered for the new exhibition. The i-th painting has beauty ai. We know that a visitor becomes happy every time he passes from a painting to a more beautiful one.
We are allowed to arranged pictures in any order. What is the maximum possible number of times the visitor may become happy while passing all pictures from first to last? In other words, we are allowed to rearrange elements of a in any order. What is the maximum possible number of indices i (1 ≤ i ≤ n - 1), such that ai + 1 > ai.
The first line of the input contains integer n (1 ≤ n ≤ 1000) — the number of painting.
The second line contains the sequence a1, a2, ..., an (1 ≤ ai ≤ 1000), where ai means the beauty of the i-th painting.
Print one integer — the maximum possible number of neighbouring pairs, such that ai + 1 > ai, after the optimal rearrangement.
5
20 30 10 50 40
4
4
200 100 100 200
2
Note
In the first sample, the optimal order is: 10, 20, 30, 40, 50.
In the second sample, the optimal order is: 100, 200, 100, 200.
贪心,每次给一个数找个对应比它大的数 ,遍历一次, 因为是找一对数, 所以找一个比当前数大的就可以。
代码:
#include<bits/stdc++.h> using namespace std; int a[1010]; int main() { int n,i,j,x; while(~scanf("%d",&n)) { x=0; for(i=0;i<n;i++) scanf("%d",&a[i]); sort(a,a+n); int k=1; for(i=0;i<n-1;i++) { for(j=k;j<n;j++) if(a[j]>a[i]) { k=j+1; x++; break; } } printf("%d\n",x); } return 0; }
注意的是
for(j=k;j<n;j++)
k=j+1;
这里用 变量而不用常量 是为了跳过已经被找过的数字(一个较大的数只能用一次)。