14、Trie
1、Trie 的结构
2、实现 Trie
/**
* 字典树: 非递归实现
* 查询的时间复杂度为: O(w), w 为 word 的长度! 跟 Trie 中存储的 word 数量无关
*/
public class Trie {
private class Node {
public boolean isWord;
public TreeMap<Character, Node> next;
public Node(boolean isWord) {
this.isWord = isWord;
this.next = new TreeMap<>();
}
public Node() {
this(false);
}
}
private final Node root;
private int size;
public Trie() {
root = new Node();
size = 0;
}
public int getSize() {
return size;
}
/**
* 向 Trie 中添加一个新的单词 word
*/
public void add(String word) {
Node cur = root;
for (int i = 0; i < word.length(); i++) {
char c = word.charAt(i);
if (!cur.next.containsKey(c)) cur.next.put(c, new Node());
cur = cur.next.get(c);
}
if (!cur.isWord) {
cur.isWord = true;
size++;
}
}
/**
* 查询 Trie 中是否包含单词 word
*/
public boolean contains(String word) {
Node cur = root;
for (int i = 0; i < word.length(); i++) {
char c = word.charAt(i);
if (!cur.next.containsKey(c)) return false;
cur = cur.next.get(c);
}
return cur.isWord;
}
/**
* 查询 Trie 中是否有以 prefix 为前缀的单词
*/
public boolean isPrefix(String prefix) {
Node cur = root;
for (int i = 0; i < prefix.length(); i++) {
char c = prefix.charAt(i);
if (!cur.next.containsKey(c)) return false;
cur = cur.next.get(c);
}
return true;
}
}
3、添加与搜索单词 - 数据结构设计
/**
* 模式匹配: 每个 '.' 都可以表示任何一个字母
*/
public class WordDictionary {
private static class Node {
public boolean isWord;
public TreeMap<Character, Node> next;
public Node(boolean isWord) {
this.isWord = isWord;
this.next = new TreeMap<>();
}
public Node() {
this(false);
}
}
private final Node root;
public WordDictionary() {
root = new Node();
}
public void addWord(String word) {
Node cur = root;
for (int i = 0; i < word.length(); i++) {
char c = word.charAt(i);
if (!cur.next.containsKey(c)) cur.next.put(c, new Node());
cur = cur.next.get(c);
}
if (!cur.isWord) cur.isWord = true;
}
public boolean search(String word) {
return match(root, word, 0);
}
/**
* 在以 node 为根节点的 Trie 中查找 word[index ... n - 1]
* node 中存放的是已经查询过的, 未查询的在 node 的下面
*/
private boolean match(Node node, String word, int index) {
if (index == word.length()) return node.isWord;
char c = word.charAt(index);
if (c != '.') {
if (!node.next.containsKey(c)) return false;
return match(node.next.get(c), word, index + 1);
} else {
for (Node nextNode : node.next.values()) {
if (match(nextNode, word, index + 1)) return true;
}
return false;
}
}
}
4、键值映射
public class MapSum {
private static class Node {
public int val;
public TreeMap<Character, Node> next;
public Node(int val) {
this.val = val;
next = new TreeMap<>();
}
public Node() {
this(0);
}
}
private final Node root;
public MapSum() {
root = new Node();
}
public void insert(String word, int val) {
Node cur = root;
for (int i = 0; i < word.length(); i++) {
char c = word.charAt(i);
if (!cur.next.containsKey(c)) cur.next.put(c, new Node());
cur = cur.next.get(c);
}
cur.val = val;
}
public int sum(String prefix) {
Node cur = root;
for (int i = 0; i < prefix.length(); i++) {
char c = prefix.charAt(i);
if (!cur.next.containsKey(c)) return 0;
cur = cur.next.get(c);
}
return sum(cur);
}
private int sum(Node node) {
int sum = node.val;
if (node.next.isEmpty()) return sum;
for (Node nextNode : node.next.values()) sum += sum(nextNode);
return sum;
}
}
5、更多话题
Trie 的局限性:空间消耗大
字符串模式识别:后缀树
更多字符串问题:子串查询、文件压缩、模式匹配(正则表达式)、编译原理、DNA
子串查询:Rabin - Karp、KMP、Boyer - Moore
5.1、删除操作
5.2、压缩字典树
5.3、Ternary Search Trie
本文来自博客园,作者:lidongdongdong~,转载请注明原文链接:https://www.cnblogs.com/lidong422339/p/17304847.html