山东济南彤昌机械科技有限公司 山东济南江鹏工贸游有限公司

NOIP2001 一元三次方程求解

题一  一元三次方程求解(20分)

问题描述
有形如:ax3+bx2+cx+d=0  这样的一个一元三次方程。给出该方程中各项的系数(a,b,c,d  均为实数),并约定该方程存在三个不同实根(根的范围在-100至100之间),且根与根之差的绝对值>=1。要求由小到大依次在同一行输出这三个实根(根与根之间留有空格),并精确到小数点后2位。
提示:记方程f(x)=0,若存在2个数x1和x2,且x1<x2,f(x1)*f(x2)<0,则在(x1,x2)之间一定有一个 根。

样例
输入:1   -5   -4   20
输出:-2.00   2.00   5.00

【思路】

  枚举。

  这个题枚举就可以通过,因为范围在-100到100之间而且精确位数为2,只需要枚举double每次加0.01依次判断即可,时间为O(10000)。需要注意的是判断double相等需要考虑精度误差。(f>=(-0.001) && f<=(0.001)) 则f==0。

【代码】

 1 #include<cstdio>
 2 using namespace std;
 3 
 4 const double eps=0.01;
 5 double a,b,c,d;
 6 
 7 int main() {
 8      scanf("%lf%lf%lf%lf",&a,&b,&c,&d);
 9      for(double x=-100.00;x<=100.00;x+=eps) {
10          double f=a*x*x*x+b*x*x+c*x+d;
11          if(f>=(-0.001) && f<=(0.001)) printf("%.2lf ",x);
12      }
13      return 0;
14 }

 

posted on 2015-10-07 21:25  hahalidaxin  阅读(393)  评论(0编辑  收藏  举报