开帖大吉!
利用FFMPEG工作已有一年多,许多学习文档散落在电脑各处,没有一个清晰明确的组织脉络;还有踩过又填平的各种坑,时间久了难免遗忘,再次遭遇时仍然要从头查起;而且事必躬亲也是毫无疑问的低效率,不利于后来同事的成长。因此有了开博的决定,希望记录下自己走过的脚印,见证自己的成长,也能帮助后来人。
近期在ffmpeg3.3版本上开发一个基于overlay滤镜的新功能,因此花了些时间把双输入滤镜的实现梳理了一番,整理的大致的函数调用关系图如下:最左侧浅黄色分支为滤镜注册;中间分支浅绿色部分是滤镜的解析和初始化;最右侧分支的浅紫色部分是滤镜的主体实现过程。因为涉及到的函数比较多,因此本篇先分析滤镜注册和初始化部分,滤镜的具体实现留到下一篇分析。
使用的命令行如下:
ffmpeg -i input.ts -i logo.png -c:v libx264 -s 1280x720 -b:v 2000k -filter_complex "[0:v][1:v]overlay=100:100" -c:a copy -f mpegts -y overlayout.ts
一、滤镜的注册
avfilter_register_all():ffmpeg中,任何滤镜在使用之前,必须先经过注册。overlay滤镜的注册如下:
REGISTER_FILTER(OVERLAY, overlay, vf);
再来看看最终调用的注册函数:
int avfilter_register(AVFilter *filter)
{
AVFilter **f = last_filter;
/* the filter must select generic or internal exclusively */
av_assert0((filter->flags & AVFILTER_FLAG_SUPPORT_TIMELINE) != AVFILTER_FLAG_SUPPORT_TIMELINE);
filter->next = NULL;
while(*f || avpriv_atomic_ptr_cas((void * volatile *)f, NULL, filter))
f = &(*f)->next;
last_filter = &filter->next; return 0;
}
所谓的滤镜注册,也就是把目标滤镜的结构体加入到滤镜结构体链表中。
二、滤镜的解析与初始化
由于overlay的输入含有两个或以上,因此采用的是complex filter。complex filter的解析和初始化在ffmpeg_parse_options阶段完成,下面我们来逐层分析该阶段对滤镜的操作。
1. init_complex_filters():
static int init_complex_filters(void)
{
int i, ret = 0;
for (i = 0; i < nb_filtergraphs; i++) {
ret = init_complex_filtergraph(filtergraphs[i]);
if (ret < 0)
return ret;
}
return 0;
}
逐个初始化滤镜图,nb_filtergraphs在解析参数阶段被赋值,在本例中,nb_filtergraphs = 1。
2. init_complex_filtergraph():
int init_complex_filtergraph(FilterGraph *fg)
{
AVFilterInOut *inputs, *outputs, *cur;
AVFilterGraph *graph;
int ret = 0;
/* this graph is only used for determining the kinds of inputs
* and outputs we have, and is discarded on exit from this function */
graph = avfilter_graph_alloc(); //为临时filter graph分配空间
if (!graph)
return AVERROR(ENOMEM);
ret = avfilter_graph_parse2(graph, fg->graph_desc, &inputs, &outputs); //解析并创建filter
if (ret < 0)
goto fail;
for (cur = inputs; cur; cur = cur->next) //初始化输入
init_input_filter(fg, cur);
for (cur = outputs; cur;) { //初始化输出,此例中只有一个输出
GROW_ARRAY(fg->outputs, fg->nb_outputs);
fg->outputs[fg->nb_outputs - 1] = av_mallocz(sizeof(*fg->outputs[0]));
if (!fg->outputs[fg->nb_outputs - 1])
exit_program(1);
fg->outputs[fg->nb_outputs - 1]->graph = fg;
fg->outputs[fg->nb_outputs - 1]->out_tmp = cur;
fg->outputs[fg->nb_outputs - 1]->type = avfilter_pad_get_type(cur->filter_ctx->output_pads,
cur->pad_idx);
fg->outputs[fg->nb_outputs - 1]->name = describe_filter_link(fg, cur, 0);
cur = cur->next;
fg->outputs[fg->nb_outputs - 1]->out_tmp->next = NULL;
}
fail:
avfilter_inout_free(&inputs); //删除分配的临时空间
avfilter_graph_free(&graph);
return ret;
}
3. av_filter_graph_parse2():
int avfilter_graph_parse2(AVFilterGraph *graph, const char *filters,
AVFilterInOut **inputs,
AVFilterInOut **outputs)
{
int index = 0, ret = 0;
char chr = 0;
AVFilterInOut *curr_inputs = NULL, *open_inputs = NULL, *open_outputs = NULL;
filters += strspn(filters, WHITESPACES);
if ((ret = parse_sws_flags(&filters, graph)) < 0)
goto fail;
do {
AVFilterContext *filter;
filters += strspn(filters, WHITESPACES);
if ((ret = parse_inputs(&filters, &curr_inputs, &open_outputs, graph)) < 0) //根据命令行解析filter的输入,此例中为[0:v]和[1:v]
goto end;
if ((ret = parse_filter(&filter, &filters, graph, index, graph)) < 0) //解析filter名称及其options,并创建该filter
goto end;
if ((ret = link_filter_inouts(filter, &curr_inputs, &open_inputs, graph)) < 0) //将输入输出加入filter link链表
goto end;
if ((ret = parse_outputs(&filters, &curr_inputs, &open_inputs, &open_outputs, //解析filter输出
graph)) < 0)
goto end;
filters += strspn(filters, WHITESPACES);
chr = *filters++;
if (chr == ';' && curr_inputs)
append_inout(&open_outputs, &curr_inputs);
index++;
} while (chr == ',' || chr == ';');
if (chr) {
av_log(graph, AV_LOG_ERROR,
"Unable to parse graph description substring: \"%s\"\n",
filters - 1);
ret = AVERROR(EINVAL);
goto end;
}
append_inout(&open_outputs, &curr_inputs);
*inputs = open_inputs;
*outputs = open_outputs;
return 0;
fail:end:
while (graph->nb_filters)
avfilter_free(graph->filters[0]);
av_freep(&graph->filters);
avfilter_inout_free(&open_inputs);
avfilter_inout_free(&open_outputs);
avfilter_inout_free(&curr_inputs);
*inputs = NULL;
*outputs = NULL;
return ret;
}
4. init_input_filter():
static void init_input_filter(FilterGraph *fg, AVFilterInOut *in)
{
InputStream *ist = NULL;
enum AVMediaType type = avfilter_pad_get_type(in->filter_ctx->input_pads, in->pad_idx); //获取filter输出类型,目前只支持视频类型和音频类型
int i;
// TODO: support other filter types
if (type != AVMEDIA_TYPE_VIDEO && type != AVMEDIA_TYPE_AUDIO) {
av_log(NULL, AV_LOG_FATAL, "Only video and audio filters supported "
"currently.\n");
exit_program(1);
}
if (in->name) { //输入name,此例中为[0:v]或[1:v]
AVFormatContext *s;
AVStream *st = NULL;
char *p;
int file_idx = strtol(in->name, &p, 0); //通过输入name得到当前输入的file_index
if (file_idx < 0 || file_idx >= nb_input_files) {
av_log(NULL, AV_LOG_FATAL, "Invalid file index %d in filtergraph description %s.\n",
file_idx, fg->graph_desc);
exit_program(1);
}
s = input_files[file_idx]->ctx; //当前file的ACFormatContext结构体
for (i = 0; i < s->nb_streams; i++) {
enum AVMediaType stream_type = s->streams[i]->codecpar->codec_type;
if (stream_type != type &&
!(stream_type == AVMEDIA_TYPE_SUBTITLE &&
type == AVMEDIA_TYPE_VIDEO /* sub2video hack */))
continue;
if (check_stream_specifier(s, s->streams[i], *p == ':' ? p + 1 : p) == 1) {
st = s->streams[i]; //确定当前输入的stream
break;
}
}
if (!st) {
av_log(NULL, AV_LOG_FATAL, "Stream specifier '%s' in filtergraph description %s "
"matches no streams.\n", p, fg->graph_desc);
exit_program(1);
}
ist = input_streams[input_files[file_idx]->ist_index + st->index]; //根据file_index和st->index确定input_stream[]数组中的index
} else { //如果命令行中没有指定filter的输入,则根据media type确定相应的输入流
/* find the first unused stream of corresponding type */
for (i = 0; i < nb_input_streams; i++) {
ist = input_streams[i];
if (ist->dec_ctx->codec_type == type && ist->discard)
break;
}
if (i == nb_input_streams) {
av_log(NULL, AV_LOG_FATAL, "Cannot find a matching stream for "
"unlabeled input pad %d on filter %s\n", in->pad_idx,
in->filter_ctx->name);
exit_program(1);
}
}
av_assert0(ist);
ist->discard = 0;
ist->decoding_needed |= DECODING_FOR_FILTER;
ist->st->discard = AVDISCARD_NONE;
GROW_ARRAY(fg->inputs, fg->nb_inputs); //扩展filter graph中input结构体
if (!(fg->inputs[fg->nb_inputs - 1] = av_mallocz(sizeof(*fg->inputs[0])))) //为新扩展的输入分配空间
exit_program(1);
fg->inputs[fg->nb_inputs - 1]->ist = ist; //为新扩展的filter graph输入赋值
fg->inputs[fg->nb_inputs - 1]->graph = fg;
fg->inputs[fg->nb_inputs - 1]->format = -1;
fg->inputs[fg->nb_inputs - 1]->type = ist->st->codecpar->codec_type;
fg->inputs[fg->nb_inputs - 1]->name = describe_filter_link(fg, in, 1);
fg->inputs[fg->nb_inputs - 1]->frame_queue = av_fifo_alloc(8 * sizeof(AVFrame*));
if (!fg->inputs[fg->nb_inputs - 1]->frame_queue)
exit_program(1);
GROW_ARRAY(ist->filters, ist->nb_filters); //扩展输入流中的filter结构体,并将当前的filter graph写入到当前输入流中相应filter结构体
ist->filters[ist->nb_filters - 1] = fg->inputs[fg->nb_inputs - 1];
}
5. parse_filter():
下面我们再来分析一下如何解析并创建一个filter实例。
static int parse_filter(AVFilterContext **filt_ctx, const char **buf, AVFilterGraph *graph,
int index, void *log_ctx)
{
char *opts = NULL;
char *name = av_get_token(buf, "=,;["); //根据命令行得到filter的名称,这里是"overlay"
int ret;
if (**buf == '=') { //提取命令行中filter的参数和选项,此处应该是100:00
(*buf)++;
opts = av_get_token(buf, "[],;");
}
ret = create_filter(filt_ctx, graph, index, name, opts, log_ctx); //根据filter的名称和参数创建filter实例
av_free(name);
av_free(opts);
return ret;
}
6. create_filter():
最后,创建filter实例。
static int create_filter(AVFilterContext **filt_ctx, AVFilterGraph *ctx, int index,
const char *filt_name, const char *args, void *log_ctx)
{
AVFilter *filt;
char inst_name[30];
char *tmp_args = NULL;
int ret;
snprintf(inst_name, sizeof(inst_name), "Parsed_%s_%d", filt_name, index);
filt = avfilter_get_by_name(filt_name); //根据filter name从注册的AVFilter链表中提取出该filter
if (!filt) {
av_log(log_ctx, AV_LOG_ERROR,
"No such filter: '%s'\n", filt_name);
return AVERROR(EINVAL);
}
*filt_ctx = avfilter_graph_alloc_filter(ctx, filt, inst_name); //创建filter实例,并加入到filter graph
if (!*filt_ctx) {
av_log(log_ctx, AV_LOG_ERROR,
"Error creating filter '%s'\n", filt_name);
return AVERROR(ENOMEM);
}
if (!strcmp(filt_name, "scale") && (!args || !strstr(args, "flags")) &&
ctx->scale_sws_opts) {
if (args) {
tmp_args = av_asprintf("%s:%s",
args, ctx->scale_sws_opts);
if (!tmp_args)
return AVERROR(ENOMEM);
args = tmp_args;
} else
args = ctx->scale_sws_opts;
}
ret = avfilter_init_str(*filt_ctx, args); //解析filter的参数并加入到该filter的私有域,并完成实例的初始化工作
if (ret < 0) {
av_log(log_ctx, AV_LOG_ERROR,
"Error initializing filter '%s'", filt_name);
if (args)
av_log(log_ctx, AV_LOG_ERROR, " with args '%s'", args);
av_log(log_ctx, AV_LOG_ERROR, "\n");
avfilter_free(*filt_ctx);
*filt_ctx = NULL;
}
av_free(tmp_args);
return ret;
}
到此,overlay filter就创建成功了。至于该filter在转码过程中是如何使用的,将会在另一篇文章中来做详细说明。
以上内容只分析了filter的注册、解析、创建和初始化,而对于filter的一些基本概念,例如滤镜图(filter graph)、滤镜链(filter link)、输入输出pad等等,由于篇幅原因,未做详细说明。有时间准备单独开一篇来整理这些概念。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 单线程的Redis速度为什么快?
· SQL Server 2025 AI相关能力初探
· AI编程工具终极对决:字节Trae VS Cursor,谁才是开发者新宠?
· 展开说说关于C#中ORM框架的用法!
2021-02-25 ubuntu16.04 下 ffmpeg 的编译安装详细教程(支持libx264实现的H.264编解码)及codeblock开发环境配置
2021-02-25 TutorABC 董海冰:Golang + WebRTC 搭建实时音视频云实践(转)
2021-02-25 多人实时互动之各WebRTC流媒体服务器的比较
2021-02-25 十大必知开源WebRTC服务器
2016-02-25 如何使用eclipse进行嵌入式Linux的开发
2016-02-25 用Eclipse和GDB构建ARM交叉编译和在线调试环境