SpringCloud--Ribbon--源码解析--IRule实现
在SpringCloud--Ribbon--源码解析--IloadBalancer&ServerListUpdater&ServerListFilter实现说到ILoadBalance的实现时提到,获取到可用的服务列表之后,需要使用IRule从实例清单中挑选一个实例进行访问,IRule接口源码及实现类关系图如下所示:
public interface IRule{ public Server choose(Object key); public void setLoadBalancer(ILoadBalancer lb); public ILoadBalancer getLoadBalancer(); }
接下来,就一一看下这十个实现类
1、AbstractLoadBalancerRule
AbstractLoadBalancerRule类是负载均衡策略IRule的抽象实现类,在该抽象类中定义了负载均衡器ILoadBalancer对象,该对象能够在具体实现选择服务策略时,获取到一些负载均衡器中维护的信息来作为分配依据,并依次设计一些算法来针对特定场景的高级策略。
public abstract class AbstractLoadBalancerRule implements IRule, IClientConfigAware { private ILoadBalancer lb; @Override public void setLoadBalancer(ILoadBalancer lb){ this.lb = lb; } @Override public ILoadBalancer getLoadBalancer(){ return lb; } }
2、RandomRule
该策略实现了从服务实例清单中随机选择一个服务实例的功能。从下面的源码可以看到,该实现类的choose方法传入了一个负载均衡器,并且使用负载均衡器获取对应的可用服务列表和全部服务列表,并通过chooseRandomInt方法获取一个随机数,该随机数作为可用服务列表的索引来获取具体的实例。这里有个问题,选择服务实例时使用的是while获取,正常情况下,每次选择都应该能选择一个实例进行返回,但是如果出现异常导致每一次都获取步到可用的实例,那么如果出现死循环而获取不到服务实例时,则很有可能存在并发的BUG。
public Server choose(ILoadBalancer lb, Object key) { if (lb == null) { return null; } Server server = null; while (server == null) { if (Thread.interrupted()) { return null; } List<Server> upList = lb.getReachableServers(); List<Server> allList = lb.getAllServers(); int serverCount = allList.size(); if (serverCount == 0) { /* * No servers. End regardless of pass, because subsequent passes * only get more restrictive. */ return null; } int index = chooseRandomInt(serverCount); server = upList.get(index); if (server == null) { /* * The only time this should happen is if the server list were * somehow trimmed. This is a transient condition. Retry after * yielding. */ Thread.yield(); continue; } if (server.isAlive()) { return (server); } // Shouldn't actually happen.. but must be transient or a bug. server = null; Thread.yield(); } return server; }
3、RoundRobinRule
该策略实现了按照轮询的方式依次选择每个服务实例的功能。该实现和上述的RandomRule类似,只是获取逻辑不同,该负载均衡策略实现逻辑是直接获取下一个可用实例,如果超过10次没有获取到可用的实例,则返回空且打印异常信息。
public Server choose(ILoadBalancer lb, Object key) { if (lb == null) { log.warn("no load balancer"); return null; } Server server = null; int count = 0; while (server == null && count++ < 10) { List<Server> reachableServers = lb.getReachableServers(); List<Server> allServers = lb.getAllServers(); int upCount = reachableServers.size(); int serverCount = allServers.size(); if ((upCount == 0) || (serverCount == 0)) { log.warn("No up servers available from load balancer: " + lb); return null; } int nextServerIndex = incrementAndGetModulo(serverCount); server = allServers.get(nextServerIndex); if (server == null) { /* Transient. */ Thread.yield(); continue; } if (server.isAlive() && (server.isReadyToServe())) { return (server); } // Next. server = null; } if (count >= 10) { log.warn("No available alive servers after 10 tries from load balancer: " + lb); } return server; }
4、RetryRule
该策略实现了一个具备重试机制的实力选择功能。重下述源码可以看出,其选择服务实例使用的是轮询选择策略RoundRobinRule,然后在获取不到服务实例的情况下,则反复尝试获取,直到调用时间超过设置的阈值,则返回空。
IRule subRule = new RoundRobinRule(); long maxRetryMillis = 500; public Server choose(ILoadBalancer lb, Object key) { long requestTime = System.currentTimeMillis(); long deadline = requestTime + maxRetryMillis; Server answer = null; answer = subRule.choose(key); if (((answer == null) || (!answer.isAlive())) && (System.currentTimeMillis() < deadline)) { InterruptTask task = new InterruptTask(deadline - System.currentTimeMillis()); while (!Thread.interrupted()) { answer = subRule.choose(key); if (((answer == null) || (!answer.isAlive())) && (System.currentTimeMillis() < deadline)) { /* pause and retry hoping it's transient */ Thread.yield(); } else { break; } } task.cancel(); } if ((answer == null) || (!answer.isAlive())) { return null; } else { return answer; } }
5、WeightedResponseTimeRule
该策略继承自RoundRobinRule,增加了根据实例的运行情况来计算权重,并根据权重来挑选实例,以达到更优的分配效果,其核心内容分为三块:定时任务、权重计算、实例选择
(1)定时任务
@Override public void setLoadBalancer(ILoadBalancer lb) { super.setLoadBalancer(lb); if (lb instanceof BaseLoadBalancer) { name = ((BaseLoadBalancer) lb).getName(); } initialize(lb); } public static final int DEFAULT_TIMER_INTERVAL = 30 * 1000; private int serverWeightTaskTimerInterval = DEFAULT_TIMER_INTERVAL; void initialize(ILoadBalancer lb) { if (serverWeightTimer != null) { serverWeightTimer.cancel(); } serverWeightTimer = new Timer("NFLoadBalancer-serverWeightTimer-" + name, true); serverWeightTimer.schedule(new DynamicServerWeightTask(), 0, serverWeightTaskTimerInterval); // do a initial run ServerWeight sw = new ServerWeight(); sw.maintainWeights(); Runtime.getRuntime().addShutdownHook(new Thread(new Runnable() { public void run() { logger .info("Stopping NFLoadBalancer-serverWeightTimer-" + name); serverWeightTimer.cancel(); } })); } class DynamicServerWeightTask extends TimerTask { public void run() { ServerWeight serverWeight = new ServerWeight(); try { serverWeight.maintainWeights(); } catch (Exception e) { logger.error("Error running DynamicServerWeightTask for {}", name, e); } } }
从上述源码可见,在设置负载均衡策略对应的负载均衡器时,调用了initialize方法,而该方法创建了一个定时任务来计算权重(最终调用的serverWeight.maintainWeights()方法),每30秒执行一次。
(2)权重计算
private volatile List<Double> accumulatedWeights = new ArrayList<Double>(); class ServerWeight { public void maintainWeights() { ILoadBalancer lb = getLoadBalancer(); if (lb == null) { return; } if (!serverWeightAssignmentInProgress.compareAndSet(false, true)) { return; } try { logger.info("Weight adjusting job started"); AbstractLoadBalancer nlb = (AbstractLoadBalancer) lb; LoadBalancerStats stats = nlb.getLoadBalancerStats(); if (stats == null) { // no statistics, nothing to do return; } double totalResponseTime = 0; // find maximal 95% response time for (Server server : nlb.getAllServers()) { // this will automatically load the stats if not in cache ServerStats ss = stats.getSingleServerStat(server); totalResponseTime += ss.getResponseTimeAvg(); } // weight for each server is (sum of responseTime of all servers - responseTime) // so that the longer the response time, the less the weight and the less likely to be chosen Double weightSoFar = 0.0; // create new list and hot swap the reference List<Double> finalWeights = new ArrayList<Double>(); for (Server server : nlb.getAllServers()) { ServerStats ss = stats.getSingleServerStat(server); double weight = totalResponseTime - ss.getResponseTimeAvg(); weightSoFar += weight; finalWeights.add(weightSoFar); } setWeights(finalWeights); } catch (Exception e) { logger.error("Error calculating server weights", e); } finally { serverWeightAssignmentInProgress.set(false); } } } void setWeights(List<Double> weights) { this.accumulatedWeights = weights; }
通过源码可见,代码中维护一个用于存储权重的List集合accumulatedWeights,同时,通过maintainWeights方法做了权重计算,该计算主要分为两步,第一步,根据LoadBalancerStatus中记录的每个实例的统计信息,累加所有实例的平均响应时间,得到总的响应时间totalResponseTime;第二步,为负载均衡器中维护的实例清单逐个计算权重(从第一个开始),计算规则为weightSoFar+totalResponseTime-实例的平均响应时间,其中weightSoFar的初始值为0。
举个例子,如果有ABCD4个实例,他们的平均响应时间是10、40、80、100,那么总的相应时间就是230,那么计算出4个实例的权重分别为:
A:230-10 = 220
B:220+(230-40) = 410
C:410+(230-80) = 560
D:560+(230-100) = 690
权重区间是左开右闭,但是第一个和最后一个比较特殊,由于在后续选择实例时会用随机数从区间中获取,但是随机数最小值可以是0,但是不会到达随机数的最大值,因此第一个左边的0是闭区间,而最后一个的右侧是开区间,因此这4个实例对应的权重区间即为:
A:[0,220]
B:(220,410]
C:(410,560]
D:(560,690)
不难发现,区间的宽度就是总的平均响应时间-实例的平均响应时间,因此实例的平均响应时间越短,那么权重的区间就越大,那么被选中的几率就越大。
(3)实例选择
public Server choose(ILoadBalancer lb, Object key) { if (lb == null) { return null; } Server server = null; while (server == null) { // get hold of the current reference in case it is changed from the other thread List<Double> currentWeights = accumulatedWeights; if (Thread.interrupted()) { return null; } List<Server> allList = lb.getAllServers(); int serverCount = allList.size(); if (serverCount == 0) { return null; } int serverIndex = 0; // last one in the list is the sum of all weights double maxTotalWeight = currentWeights.size() == 0 ? 0 : currentWeights.get(currentWeights.size() - 1); // No server has been hit yet and total weight is not initialized // fallback to use round robin if (maxTotalWeight < 0.001d || serverCount != currentWeights.size()) { server = super.choose(getLoadBalancer(), key); if(server == null) { return server; } } else { // generate a random weight between 0 (inclusive) to maxTotalWeight (exclusive) double randomWeight = random.nextDouble() * maxTotalWeight; // pick the server index based on the randomIndex int n = 0; for (Double d : currentWeights) { if (d >= randomWeight) { serverIndex = n; break; } else { n++; } } server = allList.get(serverIndex); } if (server == null) { /* Transient. */ Thread.yield(); continue; } if (server.isAlive()) { return (server); } // Next. server = null; } return server; }
通过上述源码可见,其首先生成了一个 [0,最大权重值) 区间内的随机数,然后循环权重区间,如果该随机数在权限区间内,则就拿当前权重列表的索引去服务实例获取对应的服务。还是以上面的ABCD四个实例来说明,那么随机数就是从 [0,690) 的区间中获取,如果获取的随机数数230,那么该随机数在实例B的权重区间内,因此就会选择B实例。
6、ClientConfigEnabledRoundRobinRule
该策略比较特殊,一般不会使用它。因为它本身没有什么特殊的处理逻辑,正如下面源码所示,该策略在内部定义了一个RoundRobinRule策略,而choose函数调用的就是RoundRobinRule的choose函数。该类主要的作用就是通过继承该类,在子类中做一些其他的策略时,如果条件不满足,则会使用父类的策略。
public class ClientConfigEnabledRoundRobinRule extends AbstractLoadBalancerRule { RoundRobinRule roundRobinRule = new RoundRobinRule(); @Override public void initWithNiwsConfig(IClientConfig clientConfig) { roundRobinRule = new RoundRobinRule(); } @Override public void setLoadBalancer(ILoadBalancer lb) { super.setLoadBalancer(lb); roundRobinRule.setLoadBalancer(lb); } @Override public Server choose(Object key) { if (roundRobinRule != null) { return roundRobinRule.choose(key); } else { throw new IllegalArgumentException( "This class has not been initialized with the RoundRobinRule class"); } } }
7、BestAvailableRule
该策略会选出负载最低的实例。
BestAvailableRule继承自ClientConfigEnabledRoundRobinRule,从choose方法看,会循环所有Server实例,过滤掉故障实例并选出负载最低的Server。同时我们可以发现,如果没有选择到Server的话,就会调用父类的choose方法,那么就会使用到上面说的 “通过继承该类,在子类中做一些其他的策略时,如果条件不满足,则会使用父类的策略” 。
public class BestAvailableRule extends ClientConfigEnabledRoundRobinRule { private LoadBalancerStats loadBalancerStats; @Override public Server choose(Object key) { if (loadBalancerStats == null) { return super.choose(key); } List<Server> serverList = getLoadBalancer().getAllServers(); int minimalConcurrentConnections = Integer.MAX_VALUE; long currentTime = System.currentTimeMillis(); Server chosen = null; for (Server server: serverList) { ServerStats serverStats = loadBalancerStats.getSingleServerStat(server); if (!serverStats.isCircuitBreakerTripped(currentTime)) { int concurrentConnections = serverStats.getActiveRequestsCount(currentTime); if (concurrentConnections < minimalConcurrentConnections) { minimalConcurrentConnections = concurrentConnections; chosen = server; } } } if (chosen == null) { return super.choose(key); } else { return chosen; } } @Override public void setLoadBalancer(ILoadBalancer lb) { super.setLoadBalancer(lb); if (lb instanceof AbstractLoadBalancer) { loadBalancerStats = ((AbstractLoadBalancer) lb).getLoadBalancerStats(); } } }
8、PredicateBasedRule
该策略实现了先通过子类获取一部分实例,然后通过线性轮询的方式从该部分实例中获取一个实例。
public abstract class PredicateBasedRule extends ClientConfigEnabledRoundRobinRule { public abstract AbstractServerPredicate getPredicate(); @Override public Server choose(Object key) { ILoadBalancer lb = getLoadBalancer(); Optional<Server> server = getPredicate().chooseRoundRobinAfterFiltering(lb.getAllServers(), key); if (server.isPresent()) { return server.get(); } else { return null; } } }
PredicateBasedRule继承自ClientConfigEnabledRoundRobinRule,是一个抽象类,它首先使用getPredicate方法获取一个AbstractServerPredicate的实现。而choose方法则是调用AbstractServerPredicate类的chooseRoundRobinAfterFiltering方法获取对应的Server实例并返回。
public Optional<Server> chooseRoundRobinAfterFiltering(List<Server> servers, Object loadBalancerKey) { List<Server> eligible = getEligibleServers(servers, loadBalancerKey); if (eligible.size() == 0) { return Optional.absent(); } return Optional.of(eligible.get(incrementAndGetModulo(eligible.size()))); } public List<Server> getEligibleServers(List<Server> servers, Object loadBalancerKey) { if (loadBalancerKey == null) { return ImmutableList.copyOf(Iterables.filter(servers, this.getServerOnlyPredicate())); } else { List<Server> results = Lists.newArrayList(); for (Server server: servers) { if (this.apply(new PredicateKey(loadBalancerKey, server))) { results.add(server); } } return results; } } private int incrementAndGetModulo(int modulo) { for (;;) { int current = nextIndex.get(); int next = (current + 1) % modulo; if (nextIndex.compareAndSet(current, next) && current < modulo) return current; } }
通过chooseRoundRobinAfterFiltering方法可以看到,其先是调用getEligibleServers方法获取了一部分实例,然后又调用了eligible.get(incrementAndGetModulo(eligible.size()))方法从该部分实例中动态获取了一个Server。其中getEligibleServers方法是根据this.apply(new PredicateKey(loadBalancerKey, server))进行过滤的,如果满足,就添加到返回的集合中,而apply方法,在AbstractServerPredicate中并不存在,因此需要子类实现;而incrementAndGetModulo方法则是直接返回了下一个整数(索引值),通过该索引值从返回的实例列表中取得Server实例。
9、AvailabilityFilteringRule
该策略实现了轮询获取Server并校验Server状态的功能。
public class AvailabilityFilteringRule extends PredicateBasedRule { private AbstractServerPredicate predicate; public AvailabilityFilteringRule() { super(); predicate = CompositePredicate.withPredicate(new AvailabilityPredicate(this, null)) .addFallbackPredicate(AbstractServerPredicate.alwaysTrue()) .build(); } @Override public void initWithNiwsConfig(IClientConfig clientConfig) { predicate = CompositePredicate.withPredicate(new AvailabilityPredicate(this, clientConfig)) .addFallbackPredicate(AbstractServerPredicate.alwaysTrue()) .build(); } @Override public Server choose(Object key) { int count = 0; Server server = roundRobinRule.choose(key); while (count++ <= 10) { if (predicate.apply(new PredicateKey(server))) { return server; } server = roundRobinRule.choose(key); } return super.choose(key); } @Override public AbstractServerPredicate getPredicate() { return predicate; } }
AvailabilityFilteringRule继承自PredicateBasedRule,从其choose方法可见,其并没有完全使用父类的实现方式,而是先轮询获取一个Server,然后判断该Server是否满足需要,如果满足,直接返回;如果不满足,就继续获取下一个Server,如果一直轮询10次还没有符合要求的Server,那么再使用父类的实现方式(先获取所有满足需求的Server列表,然后从该Server列表中轮询获取一个Server对象)
同时从AvailabilityFilteringRule构造函数中可以看到,AvailabilityFilteringRule使用的是AvailabilityPredicate,根据上面讲述的PredicateBasedRule,其必须要实现apply方法,从下述源码可见,apply方法主要是通过shouldSkipServer方法进行判断的,在该方法中,有两个判断维度:是否故障(断路器是否断开)、实例的并发请求数是否大于阈值(int的最大值)
private static final DynamicBooleanProperty CIRCUIT_BREAKER_FILTERING = DynamicPropertyFactory.getInstance().getBooleanProperty("niws.loadbalancer.availabilityFilteringRule.filterCircuitTripped", true); private static final DynamicIntProperty ACTIVE_CONNECTIONS_LIMIT = DynamicPropertyFactory.getInstance().getIntProperty("niws.loadbalancer.availabilityFilteringRule.activeConnectionsLimit", Integer.MAX_VALUE); private ChainedDynamicProperty.IntProperty activeConnectionsLimit = new ChainedDynamicProperty.IntProperty(ACTIVE_CONNECTIONS_LIMIT); @Override public boolean apply(@Nullable PredicateKey input) { LoadBalancerStats stats = getLBStats(); if (stats == null) { return true; } return !shouldSkipServer(stats.getSingleServerStat(input.getServer())); } private boolean shouldSkipServer(ServerStats stats) { if ((CIRCUIT_BREAKER_FILTERING.get() && stats.isCircuitBreakerTripped()) || stats.getActiveRequestsCount() >= activeConnectionsLimit.get()) { return true; } return false; }
10、ZoneAvoidanceRule
ZoneAvoidanceRule同样继承自PredicateBasedRule,同时ZoneAvoidanceRule中没有choose方法,说明完全复用了父类中的策略(先过滤所有可用的实例,然后使用轮询从满足需要的实例清单中获取一个Server)。同时通过ZoneAvoidanceRule的构造函数可见,使用的是CompositePredicate进行的过滤,CompositePredicate的构造函数传入了两个AbstractServerPredicate的子类,分别是主过滤条件ZoneAvoidancePredicate和次过滤条件AvailabilityPredicate(其实次过滤条件可以传入多个)
public ZoneAvoidanceRule() { super(); ZoneAvoidancePredicate zonePredicate = new ZoneAvoidancePredicate(this); AvailabilityPredicate availabilityPredicate = new AvailabilityPredicate(this); compositePredicate = createCompositePredicate(zonePredicate, availabilityPredicate); } private CompositePredicate createCompositePredicate(ZoneAvoidancePredicate p1, AvailabilityPredicate p2) { return CompositePredicate.withPredicates(p1, p2) .addFallbackPredicate(p2) .addFallbackPredicate(AbstractServerPredicate.alwaysTrue()) .build(); }
首先可以看下CompositePredicate的构造函数相关,可以看到,上一步在创建CompositePredicate对象时:
首先调用了withPredicates方法,该方法调用了Builder(primaryPredicates),最后调用了Builder(AbstractServerPredicate ...primaryPredicates)方法,在该方法中,将第一个过滤对象(ZoneAvoidancePredicate)赋值给delegate属性;
其次又调用了addFallbackPredicate方法,在该方法中,将第二个过滤对象(AvailabilityPredicate)赋值给了fallbacks属性
private AbstractServerPredicate delegate; private List<AbstractServerPredicate> fallbacks = Lists.newArrayList(); private int minimalFilteredServers = 1; private float minimalFilteredPercentage = 0; public static class Builder { private CompositePredicate toBuild; Builder(AbstractServerPredicate primaryPredicate) { toBuild = new CompositePredicate(); toBuild.delegate = primaryPredicate; } Builder(AbstractServerPredicate ...primaryPredicates) { toBuild = new CompositePredicate(); Predicate<PredicateKey> chain = Predicates.<PredicateKey>and(primaryPredicates); toBuild.delegate = AbstractServerPredicate.ofKeyPredicate(chain); } public Builder addFallbackPredicate(AbstractServerPredicate fallback) { toBuild.fallbacks.add(fallback); return this; } public Builder setFallbackThresholdAsMinimalFilteredNumberOfServers(int number) { toBuild.minimalFilteredServers = number; return this; } public Builder setFallbackThresholdAsMinimalFilteredPercentage(float percent) { toBuild.minimalFilteredPercentage = percent; return this; } public CompositePredicate build() { return toBuild; } } public static Builder withPredicates(AbstractServerPredicate ...primaryPredicates) { return new Builder(primaryPredicates); } public static Builder withPredicate(AbstractServerPredicate primaryPredicate) { return new Builder(primaryPredicate); }
然后可以看到CompositePredicate重写了父类中的getEligibleServers方法,因此,在获取满足条件Server集合时,就会调用CompositePredicate中的getEligibleServers方法,在该方法中,首先调用super.getEligibleServers(servers, loadBalancerKey),那么就会调用到CompositePredicate实现的apply方法,通过源码可以看到,这里直接调用了delegate.apply(input),也就是直接使用了主过滤类ZoneAvoidancePredicate的apply方法,获取到可用的服务列表后,在依次调用次过滤类(次过滤类可以是多个,CompositePredicate里只有一个AvailabilityPredicate)的getEligibleServers方法进行过滤。
CompositePredicate的总体处理逻辑如下:
(1)使用主过滤类对所有实例过滤并返回过滤后的清单
(2)依次使用次过滤类对已筛选出的清单进行再次过滤
(3)每次过滤之后,判断如果满足下面两个条件的话,就不再过滤:
过滤后的实例总数 >= 最小过滤实例数(默认值为1)
过滤后的实例比例 > 最小过滤百分比(默认值为0)
主过滤类ZoneAvoidancePredicate的apply方法在讲述SpringCloud--Ribbon--源码解析--IloadBalancer&ServerListUpdater&ServerListFilter实现的ZoneAwareLoadBalancer过滤器的时候,已经解析过源码,这里就不再赘述。
@Override public boolean apply(@Nullable PredicateKey input) { return delegate.apply(input); } @Override public List<Server> getEligibleServers(List<Server> servers, Object loadBalancerKey) { List<Server> result = super.getEligibleServers(servers, loadBalancerKey); Iterator<AbstractServerPredicate> i = fallbacks.iterator(); while (!(result.size() >= minimalFilteredServers && result.size() > (int) (servers.size() * minimalFilteredPercentage)) && i.hasNext()) { AbstractServerPredicate predicate = i.next(); result = predicate.getEligibleServers(servers, loadBalancerKey); } return result; }
-----------------------------------------------------------
---------------------------------------------
朦胧的夜 留笔~~