AndroidO bluedroid alarm 机制分析

bluedroid的alarm 机制实现在osi/osi/src/alarm.cc 中:

这里面实现了很多的接口:

alarm_t* alarm_new(const char* name);
alarm_t* alarm_new_periodic(const char* name) ;
static alarm_t* alarm_new_internal(const char* name, bool is_periodic) ;
void alarm_free(alarm_t* alarm);
void alarm_set(alarm_t* alarm, period_ms_t interval_ms, alarm_callback_t cb,
               void* data) ;
void alarm_cancel(alarm_t* alarm);
void alarm_cleanup(void);
static bool lazy_initialize(void) ;

 我们先看一个使用alarm 的事例:

在hci_layer.cc 文件中关于hci_module_start_up 的实现:

 

 startup_timer = alarm_new("hci.startup_timer");
...
 alarm_set(startup_timer, startup_timeout_ms, startup_timer_expired, NULL); 

 当startup_timeout_ms 时间到达的时候,如果startup_timer还没有被取消的话,那么startup_timer_expired函数将会被执行。

我们具体看看 其实现的过程:

我们先看看新建定时器的代码:

alarm_t* alarm_new(const char* name) { return alarm_new_internal(name, false); }
static alarm_t* alarm_new_internal(const char* name, bool is_periodic) {
  // Make sure we have a list we can insert alarms into.
  if (!alarms && !lazy_initialize()) { //最初alarm 还没有初始化,需要执行初始化流程
    CHECK(false);  // if initialization failed, we should not continue
    return NULL;
  }

  alarm_t* ret = static_cast<alarm_t*>(osi_calloc(sizeof(alarm_t)));

  ret->callback_mutex = new std::recursive_mutex;
  ret->is_periodic = is_periodic;
  ret->stats.name = osi_strdup(name);
  // NOTE: The stats were reset by osi_calloc() above

  return ret;
}

 

我们继续看看 lazy_initialize  是如何 初始化的:

static bool lazy_initialize(void) {

  bool timer_initialized = false;
  bool wakeup_timer_initialized = false;

  std::lock_guard<std::mutex> lock(alarms_mutex);

  alarms = list_new(NULL);

  if (!timer_create_internal(CLOCK_ID, &timer)) goto error;//timer_create
  timer_initialized = true;

  if (!timer_create_internal(CLOCK_ID_ALARM, &wakeup_timer)) goto error;
  wakeup_timer_initialized = true;

  alarm_expired = semaphore_new(0);//新建信号量

  default_callback_thread =
      thread_new_sized("alarm_default_callbacks", SIZE_MAX);//新建线程

  thread_set_rt_priority(default_callback_thread, THREAD_RT_PRIORITY);//提高线程优先级
  default_callback_queue = fixed_queue_new(SIZE_MAX);//新建队列

  alarm_register_processing_queue(default_callback_queue,
                                  default_callback_thread);//将线程和队列绑定

  dispatcher_thread_active = true;
  dispatcher_thread = thread_new("alarm_dispatcher");//新建定时器分发线程,该线程不停运行while(true)

  thread_set_rt_priority(dispatcher_thread, THREAD_RT_PRIORITY);
  thread_post(dispatcher_thread, callback_dispatch, NULL);//运行callback_dispatch
  return true;

error:
  ...
  return false;
}

 这里有两个线程,一个是dispatcher_thread,它一直轮询,如果有定时器到期那么他就将这个定时器放到一个(当初创建啊定时器的时候关联的队列)特定的队列里面,默认的就是default_callback_queue ,然后由另外一个线程default_callback_thread 来处理该队列里面的已经expire的定时器.

我们看看timer_create_internal的实现:

static bool timer_create_internal(const clockid_t clock_id, timer_t* timer) {
  CHECK(timer != NULL);

  struct sigevent sigevent;
  // create timer with RT priority thread
  pthread_attr_t thread_attr;
  pthread_attr_init(&thread_attr);
  pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO);
  struct sched_param param;
  param.sched_priority = THREAD_RT_PRIORITY;
  pthread_attr_setschedparam(&thread_attr, &param);

  memset(&sigevent, 0, sizeof(sigevent));
  sigevent.sigev_notify = SIGEV_THREAD;
  sigevent.sigev_notify_function = (void (*)(union sigval))timer_callback;//发送信号量
  sigevent.sigev_notify_attributes = &thread_attr;
  if (timer_create(clock_id, &sigevent, timer) == -1) {  //创建定时器
    /*错误处理*/
    }
    return false;
  }

  return true;
}

 

这里我们注意到,当定时器到期的时候,会执行timer_callback,其就是发送了一个alarm_expired的信号量:

static void timer_callback(UNUSED_ATTR void* ptr) {
  semaphore_post(alarm_expired);
}

 

这里有发送信号量,那么一定有一个地方会等待这个信号量,就是在定时器的不断等待的线程里面:

static void callback_dispatch(UNUSED_ATTR void* context) {
  while (true) {
    semaphore_wait(alarm_expired);//一直循环等待信号量
...
    }
}

 

 lazy_initialize   初始化完成之后,定时器并没有启动,只是创建了定时器.那是在哪里启动的呢?根据我们上面展示出的使用示例,在alarm_set 肯定是有启动定时器的操作的:

void alarm_set(alarm_t* alarm, period_ms_t interval_ms, alarm_callback_t cb,
               void* data) {
  alarm_set_on_queue(alarm, interval_ms, cb, data, default_callback_queue);
}

 

这里发现 调用alarm_set 传入的 队列都是default_callback_queue,

void alarm_set_on_queue(alarm_t* alarm, period_ms_t interval_ms,
                        alarm_callback_t cb, void* data, fixed_queue_t* queue) {
  CHECK(queue != NULL);
  alarm_set_internal(alarm, interval_ms, cb, data, queue);
}

 

// Runs in exclusion with alarm_cancel and timer_callback.
static void alarm_set_internal(alarm_t* alarm, period_ms_t period,
                               alarm_callback_t cb, void* data,
                               fixed_queue_t* queue) {

  std::lock_guard<std::mutex> lock(alarms_mutex);

  alarm->creation_time = now();
  alarm->period = period;
  alarm->queue = queue;
  alarm->callback = cb;
  alarm->data = data;

  schedule_next_instance(alarm);
  alarm->stats.scheduled_count++;
}

 

上面是对定时器进行封装以及赋值,然后调用schedule_next_instance 来启动 定时器:

 

// Must be called with |alarms_mutex| held
static void schedule_next_instance(alarm_t* alarm) {
  // If the alarm is currently set and it's at the start of the list,
  // we'll need to re-schedule since we've adjusted the earliest deadline.
  bool needs_reschedule =
      (!list_is_empty(alarms) && list_front(alarms) == alarm);//如果alarms 队列第一个元素就是这个定时器,那么需要重启schedule
  if (alarm->callback) remove_pending_alarm(alarm);//取出所有的pending,重复的alarm

  // Calculate the next deadline for this alarm
  period_ms_t just_now = now();
  period_ms_t ms_into_period = 0;
  if ((alarm->is_periodic) && (alarm->period != 0))
    ms_into_period = ((just_now - alarm->creation_time) % alarm->period);
  alarm->deadline = just_now + (alarm->period - ms_into_period);

  // Add it into the timer list sorted by deadline (earliest deadline first).//以下是给alarm排序,插入到某个合适的问题,最近的alarm 排在第一个
  if (list_is_empty(alarms) ||
      ((alarm_t*)list_front(alarms))->deadline > alarm->deadline) {
    list_prepend(alarms, alarm);
  } else {
    for (list_node_t* node = list_begin(alarms); node != list_end(alarms);
         node = list_next(node)) {
      list_node_t* next = list_next(node);
      if (next == list_end(alarms) ||
          ((alarm_t*)list_node(next))->deadline > alarm->deadline) {
        list_insert_after(alarms, node, alarm);
        break;
      }
    }
  }

  // If the new alarm has the earliest deadline, we need to re-evaluate our
  // schedule.
  if (needs_reschedule ||
      (!list_is_empty(alarms) && list_front(alarms) == alarm)) {
    reschedule_root_alarm();
  }
}

 

上面主要就是将alarm插入到 alarms 列表中,等待schedule,如果当前这个alarm 就是最紧迫的alarm,那么就会立即进行 schedule.

我们看看其实现reschedule_root_alarm;

// NOTE: must be called with |alarms_mutex| held
static void reschedule_root_alarm(void) {
  CHECK(alarms != NULL);

  const bool timer_was_set = timer_set;
  alarm_t* next;
  int64_t next_expiration;

  // If used in a zeroed state, disarms the timer.
  struct itimerspec timer_time;
  memset(&timer_time, 0, sizeof(timer_time));

  if (list_is_empty(alarms)) goto done;

  next = static_cast<alarm_t*>(list_front(alarms));
  next_expiration = next->deadline - now();
  if (next_expiration < TIMER_INTERVAL_FOR_WAKELOCK_IN_MS) {//如果deadline<3s>

    timer_time.it_value.tv_sec = (next->deadline / 1000);
    timer_time.it_value.tv_nsec = (next->deadline % 1000) * 1000000LL;

/*下面设置最长的wake_up 是为了减少删除该timer的开销,可以略过*/
    struct itimerspec end_of_time;
    memset(&end_of_time, 0, sizeof(end_of_time));
    end_of_time.it_value.tv_sec = (time_t)(1LL << (sizeof(time_t) * 8 - 2));
    timer_settime(wakeup_timer, TIMER_ABSTIME, &end_of_time, NULL);
  } else {
    // WARNING: do not attempt to use relative timers with *_ALARM clock IDs
    // in kernels before 3.17 unless you have the following patch:
    // https://lkml.org/lkml/2014/7/7/576
    struct itimerspec wakeup_time;
    memset(&wakeup_time, 0, sizeof(wakeup_time));

    wakeup_time.it_value.tv_sec = (next->deadline / 1000);
    wakeup_time.it_value.tv_nsec = (next->deadline % 1000) * 1000000LL;
    if (timer_settime(wakeup_timer, TIMER_ABSTIME, &wakeup_time, NULL) == -1)
      LOG_ERROR(LOG_TAG, "%s unable to set wakeup timer: %s", __func__,
                strerror(errno));
  }

done:
  timer_set =
      timer_time.it_value.tv_sec != 0 || timer_time.it_value.tv_nsec != 0;
  if (timer_was_set && !timer_set) {
    wakelock_release();
  }

  if (timer_settime(timer, TIMER_ABSTIME, &timer_time, NULL) == -1)
    LOG_ERROR(LOG_TAG, "%s unable to set timer: %s", __func__, strerror(errno));//设置定时器

  // If next expiration was in the past (e.g. short timer that got context
  // switched) then the timer might have diarmed itself. Detect this case and
  // work around it by manually signalling the |alarm_expired| semaphore.
  //
  // It is possible that the timer was actually super short (a few
  // milliseconds) and the timer expired normally before we called
  // |timer_gettime|. Worst case, |alarm_expired| is signaled twice for that
  // alarm. Nothing bad should happen in that case though since the callback
  // dispatch function checks to make sure the timer at the head of the list
  // actually expired.
  if (timer_set) {
    struct itimerspec time_to_expire;
    timer_gettime(timer, &time_to_expire);
    if (time_to_expire.it_value.tv_sec == 0 &&
        time_to_expire.it_value.tv_nsec == 0) {

      semaphore_post(alarm_expired);//如果定时器的时机已经到了,那么直接发送信号量
    }
  }
}

 

代码是实现是 在离expire 不到3s的时候启动定时器.

当定时器时间到的时候,发动alarm_expired的信号.

我们接下来看看 定时器的 已经到期的处理流程:上面我们已经知道,线程dispatcher_thread一直轮询,我们看看其实现:

// Function running on |dispatcher_thread| that performs the following:
//   (1) Receives a signal using |alarm_exired| that the alarm has expired
//   (2) Dispatches the alarm callback for processing by the corresponding
// thread for that alarm.
static void callback_dispatch(UNUSED_ATTR void* context) {
  while (true) {
    semaphore_wait(alarm_expired);//等待expire的信号量
    if (!dispatcher_thread_active) break;

    std::lock_guard<std::mutex> lock(alarms_mutex);
    alarm_t* alarm;

    // Take into account that the alarm may get cancelled before we get to it.
    // We're done here if there are no alarms or the alarm at the front is in
    // the future. Exit right away since there's nothing left to do.
    if (list_is_empty(alarms) ||
        (alarm = static_cast<alarm_t*>(list_front(alarms)))->deadline > now()) {
      reschedule_root_alarm();
      continue;
    }

    list_remove(alarms, alarm);//remove 该alarm 从队列中

    if (alarm->is_periodic) {
      alarm->prev_deadline = alarm->deadline;
      schedule_next_instance(alarm);
      alarm->stats.rescheduled_count++;
    }
    reschedule_root_alarm();//去启动下一个定时器

    // Enqueue the alarm for processing
    fixed_queue_enqueue(alarm->queue, alarm);//将该expire的定时器放到相应队列等待处理
  }

  LOG_DEBUG(LOG_TAG, "%s Callback thread exited", __func__);
}

 

这个函数做的事情,就像其名字一样,收到expire的信号之后,做一个dispatch的动作,我们接下来看看放置到队列之后如何处理的.

这里我们还要看一下当时队列和线程绑定的情况:

void alarm_register_processing_queue(fixed_queue_t* queue, thread_t* thread) {
  CHECK(queue != NULL);
  CHECK(thread != NULL);

  fixed_queue_register_dequeue(queue, thread_get_reactor(thread),
                               alarm_queue_ready, NULL);
}

 

我们看看alarm_queue_ready:

static void alarm_queue_ready(fixed_queue_t* queue, UNUSED_ATTR void* context) {
  CHECK(queue != NULL);

  std::unique_lock<std::mutex> lock(alarms_mutex);
  alarm_t* alarm = (alarm_t*)fixed_queue_try_dequeue(queue);
  if (alarm == NULL) {
    return;  // The alarm was probably canceled
  }

  //
  // If the alarm is not periodic, we've fully serviced it now, and can reset
  // some of its internal state. This is useful to distinguish between expired
  // alarms and active ones.
  //
  alarm_callback_t callback = alarm->callback;
  void* data = alarm->data;
  period_ms_t deadline = alarm->deadline;
  if (alarm->is_periodic) {
    // The periodic alarm has been rescheduled and alarm->deadline has been
    // updated, hence we need to use the previous deadline.
    deadline = alarm->prev_deadline;
  } else {
    alarm->deadline = 0;
    alarm->callback = NULL;
    alarm->data = NULL;
    alarm->queue = NULL;
  }

  std::lock_guard<std::recursive_mutex> cb_lock(*alarm->callback_mutex);
  lock.unlock();

  period_ms_t t0 = now();
  callback(data);//执行callback 函数,并reset alarm
  period_ms_t t1 = now();

  // Update the statistics
  CHECK(t1 >= t0);
  period_ms_t delta = t1 - t0;
  update_scheduling_stats(&alarm->stats, t0, deadline, delta);
}

 

上面流程的核心 就是 取出队列中的alarm,并执行其中的callback,也就是我们开定时器的时候的回调函数.

 关于定时器的介绍,就到这里.

 

posted @ 2018-08-28 17:54  雪山飞燕  阅读(2021)  评论(0编辑  收藏  举报