Resnet

Resnet

概述

resnet主要用于解决网络加深出现的退化现象,通过快捷连接的方式,很好地解决了深度神经网络难以训练的问题,可以说resnet撑起半边天,神经网络深度突破了100层,甚至可以突破1000层。

残差块

网络结构图

代码

  • 代码
from typing import Callable import torch import torch.nn as nn import numpy as np import matplotlib.pyplot as plt from torch.utils.data import DataLoader from torchvision.datasets import FashionMNIST from torchvision.transforms import ToTensor,Compose,Resize import torch.optim as optim from torch.nn import functional as F
  • ResNet残差块
class Residual(nn.Module): def __init__(self,in_channel,out_channel,use_conv=False,stride=1): super(Residual, self).__init__() self.conv1=nn.Conv2d(in_channel,out_channel,kernel_size=3,padding=1,stride=stride) self.conv2=nn.Conv2d(out_channel,out_channel,kernel_size=3,padding=1) if use_conv: self.conv3=nn.Conv2d(in_channel,out_channel,kernel_size=1,stride=stride) else: self.conv3=None self.bn1=nn.BatchNorm2d(out_channel) #输入bn的通道数 self.bn2=nn.BatchNorm2d(out_channel) def forward(self,x): y=F.relu(self.bn1(self.conv1(x))) y=self.bn2(self.conv2(y)) if self.conv3: x=self.conv3(x) return F.relu(y+x)
  • ResNet模块
def resnet_block(in_chanel,out_channel,num_residuals,first_block=False): if first_block: assert in_chanel==out_channel #第一个模块的通道数通输入通道一致 blk=[] for i in range(num_residuals): if i ==0 and not first_block: blk.append(Residual(in_chanel,out_channel,use_conv=True,stride=2)) else: blk.append(Residual(out_channel,out_channel)) return nn.Sequential(*blk)
  • 构建网络
net=nn.Sequential( nn.Conv2d(1,64,kernel_size=7,stride=2,padding=3), nn.BatchNorm2d(64), nn.ReLU(), nn.MaxPool2d(kernel_size=3,stride=2,padding=1) ) net.add_module('resnet_block1',resnet_block(64,64,2,first_block=True)) net.add_module('resnet_block2',resnet_block(64,128,2)) net.add_module('resnet_block3',resnet_block(128,256,2)) net.add_module('resnet_block4',resnet_block(256,512,2)) net.add_module('global_avg_pool',nn.AdaptiveAvgPool2d((1,1))) net.add_module('fc',nn.Sequential(nn.Flatten(),nn.Linear(512,10)))
  • 测试网络
x=torch.rand((1,1,224,224)) for name,layer in net.named_children(): x=layer(x) print(name,'output',x.shape)
  • 输出:
0 output torch.Size([1, 64, 112, 112]) 1 output torch.Size([1, 64, 112, 112]) 2 output torch.Size([1, 64, 112, 112]) 3 output torch.Size([1, 64, 56, 56]) resnet_block1 output torch.Size([1, 64, 56, 56]) resnet_block2 output torch.Size([1, 128, 28, 28]) resnet_block3 output torch.Size([1, 256, 14, 14]) resnet_block4 output torch.Size([1, 512, 7, 7]) global_avg_pool output torch.Size([1, 512, 1, 1]) fc output torch.Size([1, 10])

https://mbd.baidu.com/ma/s/rI5n0PO9


__EOF__

本文作者libraxionghao
本文链接https://www.cnblogs.com/libraxionghao/p/16204848.html
关于博主:评论和私信会在第一时间回复。或者直接私信我。
版权声明:本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!
声援博主:如果您觉得文章对您有帮助,可以点击文章右下角推荐一下。您的鼓励是博主的最大动力!
posted @   LibraXiong  阅读(199)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· winform 绘制太阳,地球,月球 运作规律
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
点击右上角即可分享
微信分享提示