数据结构与算法分析-二叉查找树

#include <stdio.h>
#include <stdlib.h>

#define ElementType int  //节点数据类型

//typedef struct TreeNode *Position;
//typedef struct TreeNode *SearchTree;

struct TreeNode
{
    ElementType Element;
    struct TreeNode *Left;
    struct TreeNode *Right;

};

typedef struct TreeNode *Position;
typedef struct TreeNode *SearchTree;

SearchTree Insert(ElementType X,  SearchTree T);
SearchTree Delete(ElementType X, SearchTree T);
SearchTree MakeEmpty(SearchTree T);
SearchTree PrintTree(SearchTree T);    //使用前序遍历打印树
Position Find(ElementType X, SearchTree T);
Position FindMax(SearchTree T);
Position FindMin(SearchTree T);


SearchTree Insert(ElementType X,  SearchTree T)
{
    if (NULL == T)
    {
        T = (SearchTree)malloc(sizeof(struct TreeNode));    
        if (NULL == T)
        {
            printf("Malloc Error!\n");
            return NULL;
        }
        else
        {
            printf("Insert %d!\n", X);
            T->Element = X;
            T->Left = T->Right = NULL;
        }
    }
    else if (X > T->Element)
    {
        T->Right = Insert(X, T->Right);
    }
    else
    {
        T->Left = Insert(X, T->Left);
    }
    return T;
}
//删除的效率并不高,因为它沿该树进行了两趟搜索以查找和删除右子树中最小的节点.
//经过大量删除操作后,将会导致左子树比右子树深,原因是我们总是用右子树的一个节点来代替删除节点 SearchTree Delete(ElementType X, SearchTree T)     { Position Temp
= NULL; if (NULL == T) { printf("Delete Element Not Found!\n"); return NULL; } else if (X > T->Element) { T->Right = Delete(X, T->Right); } else if (X < T->Element) { T->Left = Delete(X, T->Left); } else if (T->Right && T->Left) { Temp = FindMin(T->Right); T->Element = Temp->Element; T->Right = Delete(T->Element, T->Right); } else { Temp = T; if (NULL == T->Right) { T = T->Left; } else if (NULL == T->Left) { T = T->Right; } else {} free(Temp); Temp = NULL; } return T; } SearchTree MakeEmpty(SearchTree T) { if (NULL != T) { MakeEmpty(T->Right); MakeEmpty(T->Left); free(T); } return NULL; } SearchTree PrintTree(SearchTree T) { if (NULL != T) { printf("%d ", T->Element); if (NULL != T->Left) { PrintTree(T->Left); } if (NULL != T->Right) { PrintTree(T->Right); } } return NULL; } Position Find(ElementType X, SearchTree T) { if (NULL == T) { printf("Find Element Not Found!\n"); return NULL; } else if (X < T->Element) { return Find(X, T->Left); } else if (X > T->Element) { return Find(X, T->Right); } else { return T; } } Position FindMax(SearchTree T) { if (NULL != T) { while (NULL != T->Right) { T = T->Right; } } return T; } Position FindMin(SearchTree T) { if (NULL == T) { return NULL; } else if (NULL == T->Left) { return T; } else { return FindMin(T->Left); } } int main() { SearchTree T = NULL; SearchTree ptmp = NULL; T = Insert(6, T); T = Insert(2, T); T = Insert(8, T); T = Insert(4, T); T = Insert(3, T); T = Insert(1, T); ptmp = FindMin(T); if (NULL != ptmp) { printf("min:%d\n", ptmp->Element); } ptmp = FindMax(T); if (NULL != ptmp) { printf("max:%d\n", ptmp->Element); } ptmp = Find(3, T); if (NULL != ptmp) { printf("find:%d\n", ptmp->Element); } PrintTree(T); printf("\n"); T = Delete(3, T); PrintTree(T); printf("\n"); ptmp = Find(3, T); if (NULL != ptmp) { printf("find:%d\n", ptmp->Element); } T = MakeEmpty(T); return 0; }


 

posted @ 2015-12-01 18:03  粒子先生  阅读(326)  评论(0编辑  收藏  举报