day45 70. 爬楼梯 |
假设你正在爬楼梯。需要 n
阶你才能到达楼顶。
每次你可以爬 1
或 2
个台阶。你有多少种不同的方法可以爬到楼顶呢?
- 确定dp数组以及下标的含义
dp[i]:爬到有i个台阶的楼顶,有dp[i]种方法。
- 确定递推公式
在动态规划:494.目标和 (opens new window)、 动态规划:518.零钱兑换II (opens new window)、动态规划:377. 组合总和 Ⅳ (opens new window)中我们都讲过了,求装满背包有几种方法,递推公式一般都是dp[i] += dp[i - nums[j]];
本题呢,dp[i]有几种来源,dp[i - 1],dp[i - 2],dp[i - 3] 等等,即:dp[i - j]
那么递推公式为:dp[i] += dp[i - j]
确定dp数组以及下标的含义 dp[i]:爬到有i个台阶的楼顶,有dp[i]种方法。 确定递推公式 在动态规划:494.目标和 (opens new window)、 动态规划:518.零钱兑换II (opens new window)、动态规划:377. 组合总和 Ⅳ (opens new window)中我们都讲过了,求装满背包有几种方法,递推公式一般都是dp[i] += dp[i - nums[j]]; 本题呢,dp[i]有几种来源,dp[i - 1],dp[i - 2],dp[i - 3] 等等,即:dp[i - j] 那么递推公式为:dp[i] += dp[i - j]
给你一个整数数组 coins
,表示不同面额的硬币;以及一个整数 amount
,表示总金额。
计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1
。
你可以认为每种硬币的数量是无限的。
输入:coins =[1, 2, 5]
, amount =11
输出:3
解释:11 = 5 + 5 + 1
- 确定dp数组以及下标的含义
dp[j]:凑足总额为j所需钱币的最少个数为dp[j]
- 确定递推公式
凑足总额为j - coins[i]的最少个数为dp[j - coins[i]],那么只需要加上一个钱币coins[i]即dp[j - coins[i]] + 1就是dp[j](考虑coins[i])
所以dp[j] 要取所有 dp[j - coins[i]] + 1 中最小的。
递推公式:dp[j] = min(dp[j - coins[i]] + 1, dp[j]);
class Solution { public int coinChange(int[] coins, int amount) { int max = Integer.MAX_VALUE; int[] dp = new int[amount + 1]; for (int j = 0; j < dp.length; j++) { dp[j] = max; } dp[0] = 0; for (int i = 0; i < coins.length; i++) { for (int j = coins[i]; j <= amount; j++) { if (dp[j - coins[i]] != max) { dp[j] = Math.min(dp[j], dp[j - coins[i]] + 1); } } } return dp[amount] == max ? -1 : dp[amount]; } }
给你一个整数 n
,返回 和为 n
的完全平方数的最少数量 。
完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1
、4
、9
和 16
都是完全平方数,而 3
和 11
不是。
输入:n =12
输出:3 解释:12 = 4 + 4 + 4
- 确定dp数组(dp table)以及下标的含义
dp[j]:和为j的完全平方数的最少数量为dp[j]
- 确定递推公式
dp[j] 可以由dp[j - i * i]推出, dp[j - i * i] + 1 便可以凑成dp[j]。
此时我们要选择最小的dp[j],所以递推公式:dp[j] = min(dp[j - i * i] + 1, dp[j]);
- dp数组如何初始化
dp[0]表示 和为0的完全平方数的最小数量,那么dp[0]一定是0。
有同学问题,那0 * 0 也算是一种啊,为啥dp[0] 就是 0呢?
看题目描述,找到若干个完全平方数(比如 1, 4, 9, 16, ...),题目描述中可没说要从0开始,dp[0]=0完全是为了递推公式。
class Solution { public int numSquares(int n) { int max = Integer.MAX_VALUE; int[] dp = new int[n + 1]; for (int j = 0; j < n + 1; j++) { dp[j] = max; } dp[0] = 0; for (int j = 1;j <= n; j++) { for (int i = 1; i * i <= j; i++) { dp[j] = Math.min(dp[j], dp[j - i * i] + 1); } } return dp[n]; } }