day43 1049.最后一块石头的重量II |474.一和零494.目标和
有一堆石头,每块石头的重量都是正整数。
每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:
如果 x == y,那么两块石头都会被完全粉碎;
如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x。
最后,最多只会剩下一块石头。返回此石头最小的可能重量。如果没有石头剩下,就返回 0。
示例:
- 输入:[2,7,4,1,8,1]
- 输出:1
- 确定dp数组以及下标的含义
dp[j]表示容量(这里说容量更形象,其实就是重量)为j的背包,最多可以背最大重量为dp[j]。
可以回忆一下01背包中,dp[j]的含义,容量为j的背包,最多可以装的价值为 dp[j]。
相对于 01背包,本题中,石头的重量是 stones[i],石头的价值也是 stones[i] ,可以 “最多可以装的价值为 dp[j]” == “最多可以背的重量为dp[j]”
class Solution { public int lastStoneWeightII(int[] stones) { int sum = 0; for (int i : stones) { sum += i; } int target = sum >> 1; int[] dp = new int[target + 1]; for (int i = 0; i < stones.length; i++) { for (int j = target; j >= stones[i]; j--) { dp[j] = Math.max(dp[j], dp[j - stones[i]] + stones[i]); } } return sum - 2 * dp[target]; } }
给你一个二进制字符串数组 strs
和两个整数 m
和 n
。
请你找出并返回 strs
的最大子集的长度,该子集中 最多 有 m
个 0
和 n
个 1
。
如果 x
的所有元素也是 y
的元素,集合 x
是集合 y
的 子集
class Solution { public int findMaxForm(String[] strs, int m, int n) { int[][] dp = new int[m + 1][n + 1]; int oneNum, zeroNum; for (String str : strs) { oneNum = 0; zeroNum = 0; for (char ch : str.toCharArray()) { if (ch == '0') { zeroNum++; } else { oneNum++; } } //倒序遍历 for (int i = m; i >= zeroNum; i--) { for (int j = n; j >= oneNum; j--) { dp[i][j] = Math.max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1); } } } return dp[m][n]; } }
给你一个整数数组 nums
和一个整数 target
。
向数组中的每个整数前添加 '+'
或 '-'
,然后串联起所有整数,可以构造一个 表达式 :
- 例如,
nums = [2, 1]
,可以在2
之前添加'+'
,在1
之前添加'-'
,然后串联起来得到表达式"+2-1"
。
返回可以通过上述方法构造的、运算结果等于 target
的不同 表达式 的数目。
class Solution { public int findTargetSumWays(int[] nums, int target) { int sum = 0; for (int i = 0; i < nums.length; i++) { sum += nums[i]; } if ( target < 0 && sum < -target) return 0; if ((target + sum) % 2 != 0) return 0; int size = (target + sum) / 2; if(size < 0) size = -size; int[] dp = new int[size + 1]; dp[0] = 1; for (int i = 0; i < nums.length; i++) { for (int j = size; j >= nums[i]; j--) { dp[j] += dp[j - nums[i]]; } } return dp[size]; } }