常用软件配置
1. ubuntu源设置
1.1 设置中选择源
setting -> software&updates -> other -> china
2. pip源设置
2.1 指定安装源
pip install 要安装的包 -i https://pypi.tuna.tsinghua.edu.cn/simple
pypi 清华大学源:https://pypi.tuna.tsinghua.edu.cn/simple
pypi 豆瓣源 :http://pypi.douban.com/simple/
pypi 腾讯源:http://mirrors.cloud.tencent.com/pypi/simple
pypi 阿里源:https://mirrors.aliyun.com/pypi/simple/
pypi 默认官方源: https://pypi.org/simple
2.2 可以把清华源设置为默认源(首先要把pip升级到10以上)
pip install pip -U
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
3. git本地账户设置
3.1 设置git用户名/邮箱
git config --global user.name [username]
git config --global user.email [email]
3.2 保存信息,避免每次输入
echo "[credential]" >> .git/config
echo " helper = store" >> .git/config
4. 安装特定版本的python
4.1 安装python3.7
wget http://www.python.org/ftp/python/3.7.1/Python-3.7.1.tgz
tar -xvzf Python-3.7.1.tgz
cd Python-3.7.1
./configure --with-ssl
make
sudo make install
PATH=$PATH:$HOME/bin:/usr/local/python3.7.1/bin
4.2 修改软连接
mv /usr/bin/python /usr/bin/python.bak
ln -s /usr/local/bin/python3.7 /usr/bin/python
mv /usr/bin/pip /usr/bin/pip.bak
ln -s /usr/local/bin/pip3 /usr/bin/pip
4.3 相关错误
Q1: 报ssl module in Python is not available
的错误
A: https://blog.csdn.net/zr1076311296/article/details/75136612
Q2: 报zipimport.ZipImportError: can’t decompress data; zlib not available in Linux
A: sudo apt-get install zlib*
Q3: sqlite
A: 参考:https://www.jianshu.com/p/dd4532457b9f
5. Docker
5.1 错误
- Q:
Error response from daemon: Get https://registry-1.docker.io/v2/ ... read: connection refused
- A: CSDN资料
- A: 简书资料
5.2 pull镜像修改,加快下载速度
在/etc/docker/daemon.json
文件中添加下面参数,此处使用的是中国科技大学的docker镜像源
{
"registry-mirrors" : ["https://docker.mirrors.ustc.edu.cn"],
"runtimes": {
"nvidia": {
"path": "nvidia-container-runtime",
"runtimeArgs": []
}
}
}
6. 安装tensorflow_GPU版,需要NVIDIA+CUDA+cuDNN
6.1 安装的是TensorFlow2,与安装TensorFlow1.x有差别
TensorFlow相应版本对应的CUDA和cuDNN,页面底部
#版本:tensorflow=2.1.0 CUDA=10.1.243-1 cuDNN=7.6.5.32-1+cuda10.1
# Add NVIDIA package repositories
# Add HTTPS support for apt-key
$ sudo apt-get install gnupg-curl
$ wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-repo-ubuntu1604_10.1.243-1_amd64.deb
$ sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub
$ sudo dpkg -i cuda-repo-ubuntu1604_10.1.243-1_amd64.deb
$ sudo apt-get update
$ wget http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1604/x86_64/nvidia-machine-learning-repo-ubuntu1604_1.0.0-1_amd64.deb
$ sudo apt install ./nvidia-machine-learning-repo-ubuntu1604_1.0.0-1_amd64.deb
$ sudo apt-get update
# Issue with driver install requires creating /usr/lib/nvidia
sudo mkdir /usr/lib/nvidia
# Install NVIDIA driver 安装cuda时会自动安装适合自己的NVIDIA驱动
# Install development and runtime libraries (~4GB)
sudo apt-get install --no-install-recommends \
cuda-10-1 \
libcudnn7=7.6.5.32-1+cuda10.1 \
libcudnn7-dev=7.6.5.32-1+cuda10.1
# Reboot. Check that GPUs are visible using the command: nvidia-smi
# Install TensorRT. Requires that libcudnn7 is installed above.
sudo apt-get install -y --no-install-recommends \
libnvinfer6=6.0.1-1+cuda10.1 \
libnvinfer-dev=6.0.1-1+cuda10.1 \
libnvinfer-plugin6=6.0.1-1+cuda10.1
#查看已经暗转的cuda和NVIDIA
$ sudo dpkg -l |grep cuda
$ sudo lspci | grep -i nvidia
6.2 安装的是TensorFlow相关
TensorFlow相应版本对应的CUDA和cuDNN,页面底部
#版本:tensorflow=1.14.0 CUDA=10.0.130-1 cuDNN=7.4.1.5 TensorRT=5.1.5-1+cuda10.0
# Add NVIDIA package repositories
# Add HTTPS support for apt-key
$ sudo apt-get install gnupg-curl
$ wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-repo-ubuntu1604_10.0.130-1_amd64.deb
$ sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub
$ sudo dpkg -i cuda-repo-ubuntu1604_10.0.130-1_amd64.deb
$ sudo apt-get update
$ wget http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1604/x86_64/nvidia-machine-learning-repo-ubuntu1604_1.0.0-1_amd64.deb
$ sudo apt install ./nvidia-machine-learning-repo-ubuntu1604_1.0.0-1_amd64.deb
$ sudo apt-get update
# Issue with driver install requires creating /usr/lib/nvidia
sudo mkdir /usr/lib/nvidia
# Install NVIDIA driver 安装cuda时会自动安装适合自己的NVIDIA驱动
# Install development and runtime libraries (~4GB)
sudo apt-get install --no-install-recommends \
cuda-10-0 \
libcudnn7=7.4.1.5-1+cuda10.0 \
libcudnn7-dev=7.4.1.5-1+cuda10.0
# Reboot. Check that GPUs are visible using the command: nvidia-smi
# Install TensorRT. Requires that libcudnn7 is installed above.
sudo apt-get install -y --no-install-recommends \
libnvinfer5=5.1.5-1+cuda10.0 \
libnvinfer-dev=5.1.5-1+cuda10.0 \
#libnvinfer5_5.1.5-1+cuda10.0_amd64.deb
6.2 测试tensorflow GPU版是否安装成功
$ import tensorflow as tf
$ tf.test.is_gpu_available()
6.3 tensorflow不能使用GPU提示:
W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libnvinfer.so.6'; dlerror: libcublasLt.so.10: cannot open shared object file: No such file or directory;
W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libnvinfer_plugin.so.6'; dlerror: libcublasLt.so.10: cannot open shared object file: No such file or directory;
W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:30] Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
# 经过搜索发现libnvinfer.so.6 位于/usr/lib/x86_64-linux-gnu/ libcublasLt.so.10位于/usr/local/cuda-10.2/targets/x86_64-linux/lib/lib
$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/extras/CUPTI/lib64
$ sudo cp /usr/lib/x86_64-linux-gnu/libnvinfer* /usr/local/cuda/targets/x86_64-linux/lib
$ sudo cp /usr/local/cuda-10.2/targets/x86_64-linux/lib/lib* /usr/local/cuda/targets/x86_64-linux/lib
7. 键鼠共享
安家的参考博客