JVM -- GC介绍
GC是什么?为什么要有GC?
GC(Garbage Collection)是垃圾收集的意思,内存处理是编程人员容易出现问题的地方,忘记或者错误的内存回收会导致程序或系统的不稳定甚至崩溃,Java提供的GC功能可以自动监测对象是否超过作用域从而达到自动回收内存的目的,垃圾回收的执行速度则影响着整个程序的执行效率,Java语言没有提供释放已分配内存的显示操作方法。 Java程序员不用担心内存管理,因为垃圾收集器会自动进行管理。要请求垃圾收集,可以调用下面的方法之一:System.gc() 或Runtime.getRuntime().gc() ,但JVM可以屏蔽掉显示的垃圾回收调用。 垃圾回收可以有效的防止内存泄露,有效的使用可以使用的内存。
垃圾回收器通常是作为一个单独的低优先级的线程运行,不可预知的情况下对内存堆中已经死亡的或者长时间没有使用的对象进行清除和回收,程序员不能实时的调用垃圾回收器对某个对象或所有对象进行垃圾回收。 在Java诞生初期,垃圾回收是Java最大的亮点之一,因为服务器端的编程需要有效的防止内存泄露问题,然而时过境迁,如今Java的垃圾回收机制已经成为被诟病的东西。移动智能终端用户通常觉得iOS的系统比Android系统有更好的用户体验,其中一个深层次的原因就在于Android系统中垃圾回收的不可预知性。
你知道哪些垃圾回收算法?各自的特点?
JVM 如何判断一个对象已死?(是无用对象或者说应该被回收?)
在堆里面存放着Java世界中几乎所有的对象实例,垃圾收集器在对堆进行回收前,第一件事情就是要确定这些对象之中哪些还“存活”着,哪些已经“死去”(“死去”即不可能再被任何途径使用的对 象)了。死亡的对象将会被标识为垃圾数据并等待收集器进行清除。
判断一个对象是否为死亡状态的常用算法有两个:引用计数算法和可达性分析算法。
(1)引用计数算法
引用计数算法(Reference Counting) 是指在对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加一;当引用失效时,计数器值就减一;任何时刻计数器为零的对象就是不可能再被使用的。
优点:原理简单,判定效率也很高。
但是,在Java 领域,至少主流的Java虚拟机里面都没有选用引用计数算法来管理内存,主要原因是,这个看似简单的算法有很多例外情况要考虑,必须要配合大量额外处理才能保证正确地工作,譬如单纯的引用计数就很难解决对象之间相互循环引用的问题。
缺点:单纯的引用计数很难解决对象之间相互循环引用的问题。
class CustomOne { private CustomTwo two; public CustomTwo getCustomTwo() { return two; } public void setCustomTwo(CustomTwo two) { this.two = two; } } class CustomTwo { private CustomOne one; public CustomOne getCustomOne() { return one; } public void setCustomOne(CustomOne one) { this.one = one; } } public class RefCountingTest { public static void main(String[] args) { CustomOne one = new CustomOne(); CustomTwo two = new CustomTwo(); one.setCustomTwo(two); two.setCustomOne(one); one = null; two = null; } }
实际上这两个对象已经不可能再被访问,但是它们因为互相引用着对方,导致它们的引用计数都不为零,引用计数算法也就无法回收它们。
(2)可达性分析算法(根搜索算法)
当前主流的商用程序语言(Java、C#......)的内存管理子系统,都是通过可达性分析(Reachability Analysis)算法来判定对象是否存活的。
这个算法的基本思路就是通过一系列称为“GC Roots”的根对象作为起始节点集,从这些节点开始,根据引用关系向下搜索,搜索过程所走过的路径称为“引用链”(Reference Chain),如果某个对象到GC Roots间没有任何引用链相连, 或者用图论的话来说就是从GC Roots到这个对象不可达时,则证明此对象是不可能再被使用的。
对象object 5、object 6、object 7虽然互有关联,但是它们到GC Roots是不可达的, 因此它们将会被判定为可回收的对象。
注:程序员对垃圾回收机制只有建议权,没有控制权。
根搜索算法中的根节点可以是哪些对象?
在Java技术体系里面,固定可作为GC Roots的对象包括以下几种: ·
(1)在虚拟机栈(栈帧中的本地变量表)中引用的对象,譬如各个线程被调用的方法堆栈中使用到的 参数、局部变量、临时变量等。 ·
(2)在方法区中类静态属性引用的对象,譬如Java类的引用类型静态变量。 ·
(3)在方法区中常量引用的对象,譬如字符串常量池(String Table)里的引用。
(4)在本地方法栈中JNI(即通常所说的Native方法)引用的对象。
(5)Java虚拟机内部的引用,如基本数据类型对应的Class对象,一些常驻的异常对象(比如 NullPointExcepiton、OutOfMemoryError)等,还有系统类加载器。 ·
(6)所有被同步锁(synchronized关键字)持有的对象。
(7)反映Java虚拟机内部情况的JMXBean、JVMTI中注册的回调、本地代码缓存等。
除了这些固定的GC Roots集合以外,根据用户所选用的垃圾收集器以及当前回收的内存区域不 同,还可以有其他对象“临时性”地加入,共同构成完整GC Roots集合。譬如后文将会提到的分代收集 和局部回收(Partial GC),如果只针对Java堆中某一块区域发起垃圾收集时(如最典型的只针对新生 代的垃圾收集),必须考虑到内存区域是虚拟机自己的实现细节(在用户视角里任何内存区域都是不 可见的),更不是孤立封闭的,所以某个区域里的对象完全有可能被位于堆中其他区域的对象所引 用,这时候就需要将这些关联区域的对象也一并加入GC Roots集合中去,才能保证可达性分析的正确 性。
再谈引用
无论是通过引用计数算法判断对象的引用数量,还是通过可达性分析算法判断对象是否引用链可 达,判定对象是否存活都和“引用”离不开关系。在JDK 1.2版之前,Java里面的引用是很传统的定义: 如果reference类型的数据中存储的数值代表的是另外一块内存的起始地址,就称该reference数据是代表 某块内存、某个对象的引用。这种定义并没有什么不对,只是现在看来有些过于狭隘了,一个对象在 这种定义下只有“被引用”或者“未被引用”两种状态,对于描述一些“食之无味,弃之可惜”的对象就显 得无能为力。譬如我们希望能描述一类对象:当内存空间还足够时,能保留在内存之中,如果内存空 间在进行垃圾收集后仍然非常紧张,那就可以抛弃这些对象——很多系统的缓存功能都符合这样的应用场景。
在JDK 1.2版之后,Java对引用的概念进行了扩充,将引用分为强引用(Strongly Re-ference)、软 引用(Soft Reference)、弱引用(Weak Reference)和虚引用(Phantom Reference)4种,这4种引用强 度依次逐渐减弱。
·强引用是最传统的“引用”的定义,是指在程序代码之中普遍存在的引用赋值,即类似“Object obj=new Object()”这种引用关系。无论任何情况下,只要强引用关系还存在,垃圾收集器就永远不会回收掉被引用的对象。
·软引用是用来描述一些还有用,但非必须的对象。只被软引用关联着的对象,在系统将要发生内存溢出异常前,会把这些对象列进回收范围之中进行第二次回收,如果这次回收还没有足够的内存, 才会抛出内存溢出异常。在JDK 1.2版之后提供了SoftReference类来实现软引用。
·弱引用也是用来描述那些非必须对象,但是它的强度比软引用更弱一些,被弱引用关联的对象只能生存到下一次垃圾收集发生为止。当垃圾收集器开始工作,无论当前内存是否足够,都会回收掉只被弱引用关联的对象。在JDK 1.2版之后提供了WeakReference类来实现弱引用。
·虚引用也称为“幽灵引用”或者“幻影引用”,它是最弱的一种引用关系。一个对象是否有虚引用的 存在,完全不会对其生存时间构成影响,也无法通过虚引用来取得一个对象实例。为一个对象设置虚引用关联的唯一目的只是为了能在这个对象被收集器回收时收到一个系统通知。在JDK 1.2版之后提供 了PhantomReference类来实现虚引用。
感谢您的阅读,如果您觉得阅读本文对您有帮助,请点一下“推荐”按钮。本文欢迎各位转载,但是转载文章之后必须在文章页面中给出作者和原文连接。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· winform 绘制太阳,地球,月球 运作规律
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 上周热点回顾(3.3-3.9)