Iterator definitions
An iterator is any object that, pointing to some element in a range of elements (such as an array or a container), has the ability to iterate through the elements of that range using a set of operators (with at least the increment (++
) and dereference (*
) operators).
The most obvious form of iterator is a pointer: A pointer can point to elements in an array, and can iterate through them using the increment operator (++
). But other kinds of iterators are possible. For example, each container type (such as a list) has a specific iterator type designed to iterate through its elements.
Notice that while a pointer is a form of iterator, not all iterators have the same functionality of pointers; Depending on the properties supported by iterators, they are classified into five different categories:
Iterator categories
Iterators are classified into five categories depending on the functionality they implement:
Input and output iterators are the most limited types of iterators: they can perform sequential single-pass input or output operations.
Forward iterators have all the functionality of input iterators and -if they are not constant iterators- also the functionality of output iterators, although they are limited to one direction in which to iterate through a range (forward). All standard containers support at least forward iterator types.
Bidirectional iterators are like forward iterators but can also be iterated through backwards.
Random-access iterators implement all the functionality of bidirectional iterators, and also have the ability to access ranges non-sequentially: distant elements can be accessed directly by applying an offset value to an iterator without iterating through all the elements in between. These iterators have a similar functionality to standard pointers (pointers are iterators of this category).
The properties of each iterator category are:
category | properties | valid expressions | |||
---|---|---|---|---|---|
all categories | copy-constructible, copy-assignable and destructible | X b(a); | |||
Can be incremented | ++a | ||||
Random Access | Bidirectional | Forward | Input | Supports equality/inequality comparisons | a == b |
Can be dereferenced as an rvalue | *a a->m | ||||
Output | Can be dereferenced as an lvalue (only for mutable iterator types) | *a = t *a++ = t | |||
default-constructible | X a; X() | ||||
Multi-pass: neither dereferencing nor incrementing affects dereferenceability | { b=a; *a++; *b; } | ||||
Can be decremented | --a a-- *a-- | ||||
Supports arithmetic operators + and - | a + n n + a a - n a - b | ||||
Supports inequality comparisons (<, >, <= and >=) between iterators | a < b a > b a <= b a >= b | ||||
Supports compound assignment operations += and -= | a += n a -= n | ||||
Supports offset dereference operator ([]) | a[n] |
Where X is an iterator type, a and b are objects of this iterator type, t is an object of the type pointed by the iterator type, and n is an integer value.
For more details, see the references for input iterator, output iterator, forward iterator, bidirectional iterator and random-access iterator.
Functions
Iterator operations:
- advance
- Advance iterator (function template )
- distance
- Return distance between iterators (function template )
- begin
- Iterator to beginning (function template )
- end
- Iterator to end (function template )
- prev
- Get iterator to previous element (function template )
- next
- Get iterator to next element (function template )
Iterator generators:
- back_inserter
- Construct back insert iterator (function template )
- front_inserter
- Constructs front insert iterator (function template )
- inserter
- Construct insert iterator (function template )
- make_move_iterator
- Construct move iterator (function template )
Classes
- iterator
- Iterator base class (class template )
- iterator_traits
- Iterator traits (class template )
Predefined iterators
- reverse_iterator
- Reverse iterator (class template )
- move_iterator
- Move iterator (class template )
- back_insert_iterator
- Back insert iterator (class template )
- front_insert_iterator
- Front insert iterator (class template )
- insert_iterator
- Insert iterator (class template )
- istream_iterator
- Istream iterator (class template )
- ostream_iterator
- Ostream iterator (class template )
- istreambuf_iterator
- Input stream buffer iterator (class template )
- ostreambuf_iterator
- Output stream buffer iterator (class template )
Category tags
- input_iterator_tag
- Input iterator category (class )
- output_iterator_tag
- Output iterator category (class )
- forward_iterator_tag
- Forward iterator category (class )
- bidirectional_iterator_tag
- Bidirectional iterator category (class )
- random_access_iterator_tag
- Random-access iterator category (class )
C++设计模式——迭代器模式
Code不足之处: 直接将链表的创建和遍历都放在一类。
typedef struct tagNode { int value; tagNode *pPre; tagNode *pNext; }Node; class CList { public: CList(); CList(size_t n); ~CList(); bool PushBack(int value); bool PopBack(int &value); bool Insert(int pos, int value); bool Delete(int pos); bool IsEmpty(); int GetLength(); void Print(); // To iterate the list bool HasNext(); int Next(); private: int m_iLength; Node *m_pCurrent; Node *m_pHead; Node *m_pTail; };
迭代器模式
在GOF的《设计模式:可复用面向对象软件的基础》一书中对迭代器模式是这样说的:提供一种方法顺序访问一个聚合对象中各个元素,而又不需要暴露该对象的内部表示。
一个聚合对象,就是所谓的对象容器了;作为一个容器,都应该提供一种方法来让别人可以访问它的元素;但是,有的时候不希望遍历容器的人知道容器是如何实现的;那该怎么办?上面实现的链表,只提供了从头到尾的遍历,如果需要从尾到头的遍历呢?是不是又要添加对应的方法了呢!容器的遍历方式千变万化,不知道需求是如何的,如果需求变了,那么代码就会发生很大的改动。因此,必须去将一个容器的内部结构与它的遍历进行解耦。就好比STL中的容器,它将容器中对象的实现和遍历很好的解耦了,所以,无法知道它的内部是如何组织对象数据的,同时可以按照自己的想法去遍历容器,而不会出现任何差错。在项目中使用迭代器模式就能很好的将容器对象的内部表示与对它的遍历进行解耦。
Iterator:定义迭代器访问和遍历元素的接口;
ConcreteIterator:实现具体的迭代器;
Aggregate:定义的容器,创建相应迭代器对象的接口;
ConcreteAggregate:具体的容器实现创建相应迭代器的接口,该操作返回ConcreteIterator的一个适当的实例。
使用场合
作用
代码实现
#include <iostream> using namespace std; typedef struct tagNode { int value; tagNode *pNext; }Node; class JTList { public: JTList() : m_pHead(NULL), m_pTail(NULL){}; JTList(const JTList &); ~JTList(); JTList &operator=(const JTList &); long GetCount() const; Node *Get(const long index) const; Node *First() const; Node *Last() const; bool Includes(const int &) const; void Append(const int &); void Remove(Node *pNode); void RemoveAll(); private: Node *m_pHead; Node *m_pTail; long m_lCount; }; class Iterator { public: virtual void First() = 0; virtual void Next() = 0; virtual bool IsDone() const = 0; virtual Node *CurrentItem() const = 0; }; class JTListIterator : public Iterator { public: JTListIterator(JTList *pList) : m_pJTList(pList), m_pCurrent(NULL){} virtual void First(); virtual void Next(); virtual bool IsDone() const; virtual Node *CurrentItem() const; private: JTList *m_pJTList; Node *m_pCurrent; }; JTList::~JTList() { Node *pCurrent = m_pHead; Node *pNextNode = NULL; while (pCurrent) { pNextNode = pCurrent->pNext; delete pCurrent; pCurrent = pNextNode; } } long JTList::GetCount()const { return m_lCount; } Node *JTList::Get(const long index) const { // The min index is 0, max index is count - 1 if (index > m_lCount - 1 || index < 0) { return NULL; } int iPosTemp = 0; Node *pNodeTemp = m_pHead; while (pNodeTemp) { if (index == iPosTemp++) { return pNodeTemp; } pNodeTemp = pNodeTemp->pNext; } return NULL; } Node *JTList::First() const { return m_pHead; } Node *JTList::Last() const { return m_pTail; } bool JTList::Includes(const int &value) const { Node *pNodeTemp = m_pHead; while (pNodeTemp) { if (value == pNodeTemp->value) { return true; } pNodeTemp = pNodeTemp->pNext; } return false; } void JTList::Append(const int &value) { // Create the new node Node *pInsertNode = new Node; pInsertNode->value = value; pInsertNode->pNext = NULL; // This list is empty if (m_pHead == NULL) { m_pHead = m_pTail = pInsertNode; } else { m_pTail->pNext = pInsertNode; m_pTail = pInsertNode; } ++m_lCount; } void JTList::Remove(Node *pNode) { if (pNode == NULL || m_pHead == NULL || m_pTail == NULL) { return; } if (pNode == m_pHead) // If the deleting node is head node { Node *pNewHead = m_pHead->pNext; m_pHead = pNewHead; } else { // To get the deleting node's previous node Node *pPreviousNode = NULL; Node *pCurrentNode = m_pHead; while (pCurrentNode) { pPreviousNode = pCurrentNode; pCurrentNode = pCurrentNode->pNext; if (pCurrentNode == pNode) { break; } } // To get the deleting node's next node Node *pNextNode = pNode->pNext; // If pNextNode is NULL, it means the deleting node is the tail node, we should change the m_pTail pointer if (pNextNode == NULL) { m_pTail = pPreviousNode; } // Relink the list pPreviousNode->pNext = pNextNode; } // Delete the node delete pNode; pNode = NULL; --m_lCount; } void JTList::RemoveAll() { delete this; } void JTListIterator::First() { m_pCurrent = m_pJTList->First(); } void JTListIterator::Next() { m_pCurrent = m_pCurrent->pNext; } bool JTListIterator::IsDone() const { return m_pCurrent == m_pJTList->Last()->pNext; } Node *JTListIterator::CurrentItem() const { return m_pCurrent; } int main() { JTList *pJTList = new JTList; pJTList->Append(10); pJTList->Append(20); pJTList->Append(30); pJTList->Append(40); pJTList->Append(50); pJTList->Append(60); pJTList->Append(70); pJTList->Append(80); pJTList->Append(90); pJTList->Append(100); Iterator *pIterator = new JTListIterator(pJTList); // Print the list by JTListIterator for (pIterator->First(); !pIterator->IsDone(); pIterator->Next()) { cout<<pIterator->CurrentItem()->value<<"->"; } cout<<"NULL"<<endl; // Test for removing Node *pDeleteNode = NULL; for (pIterator->First(); !pIterator->IsDone(); pIterator->Next()) { pDeleteNode = pIterator->CurrentItem(); if (pDeleteNode->value == 100) { pJTList->Remove(pDeleteNode); break; } } // Print the list by JTListIterator for (pIterator->First(); !pIterator->IsDone(); pIterator->Next()) { cout<<pIterator->CurrentItem()->value<<"->"; } cout<<"NULL"<<endl; delete pIterator; delete pJTList; return 0; }
代码中实现了一个单向链表,将链表与迭代器解耦。对于多态迭代,添加抽象类AbstractJTList,声明如下:
class AbstractJTList { public: virtual Iterator *GetIterator() const = 0; };
类JTList继承该抽象类,并实现GetIterator,如下:
Iterator *JTList::GetIterator() const { return new JTListIterator(this); }
好了,这样的话,在客户端就不用去new JTListIterator了,只需要这样:
Iterator *pIterator = pJTList->GetIterator();
这就完全好了;但是,这样又出现另外一个问题,在GetIterator中new了一个JTListIterator,对于客户端来说,并不知道这个new操作的存在,就会出现客户端不会去释放这个new开辟的内存,那么如何实现这个内存的自动释放呢。好了,就结合迭代器模式,再将之前总结的RAII机制再实际运用一次。根据RAII机制,需要将这个迭代器进行封装,让它具有自动释放的功能,就得借助另一个类,如下:
class IteratorPtr { public: IteratorPtr(Iterator *pIterator) : m_pIterator(pIterator){} ~IteratorPtr() { delete m_pIterator; } Iterator *operator->(){ return m_pIterator; } Iterator &operator*() { return *m_pIterator; } private: IteratorPtr(const IteratorPtr &); IteratorPtr &operator=(const IteratorPtr &); void *operator new(size_t size); void operator delete(void *); private: Iterator *m_pIterator; };
在使用的时候,就像下面这样,就省去了释放迭代器的麻烦了。
IteratorPtr pIterator(pJTList->GetIterator());
总结
迭代器模式是一个很经典的模式。但是,就是因为它太经典了,如果每次都要程序员去重复造轮子,就有点说不过去了,所以,现在基本成型的类库,都非常好的实现了迭代器模式,在使用这些类库提供的容器时,并不需要我们亲自去实现对应的迭代器;就好比STL了。但是话又说回来了,如此经典的东西,你不去学习是不是很可惜啊;是吧,在当今社会,技多不压身。好了,永远记住,设计模式是一种思想,并不是一层不变的,一种思想,你懂的。