汉诺塔问题递归算法的设计

 汉诺塔问题的描述是:设有三根标号为A,B,C的柱子上,在A柱上放着n个盘子,每一个都比下面的略小一点,要求把A柱上的盘子全部移动到C柱上,规则是:一次只能移动一个盘子;移动的过程中大盘只能放在小盘下面;在移动过程中盘子可以放在A,B,C的任意一个柱子上。

递归方法求解:一个盘子的汉诺塔问题可直接移动(递归出口)。n个盘子的汉诺塔问题可递归表示为如下的子问题求解的形式,首先把上边的n-1个盘子从A柱移动到B柱,然后把最下边的一个盘子从A柱移动到C柱,最后把移到B柱的n-1个盘子再移到C柱。

如下图所示,n个盘子从上到下标号为1,2,3,4,……,n

 1 package tower;
 2 
 3 public class Tower {
 4     public static void moveDish(int n, char from, char temp, char to) {
 5         if (n == 1) {
 6             System.out.println( "1 号 : " +"from " +from +" to "+ to);
 7         } else {
 8             moveDish(n - 1, from, to, temp);
 9             System.out.println(n + " 号 : "+ "from " + from  +  " to " + to);
10             moveDish(n - 1, temp, from, to);
11         }
12     }
13     
14     public static void main(String []args){
15         moveDish(3, 'A', 'B', 'C');
16     }
17 }

 

 

posted on 2018-04-06 17:16  小星_log  阅读(9676)  评论(0编辑  收藏  举报