external-provisioner源码分析(1)-主体处理逻辑分析
更多ceph-csi其他源码分析,请查看下面这篇博文:kubernetes ceph-csi分析目录导航
概述
接下来将对external-provisioner组件进行源码分析。
在external-provisioner组件中,rbd与cephfs共用一套处理逻辑,也即同一套代码,同时适用于rbd存储与cephfs存储。
external-provisioner组件的源码分析分为三部分:
(1)主体处理逻辑分析;
(2)main方法与Leader选举分析;
(3)组件启动参数分析。
基于tag v1.6.0
https://github.com/kubernetes-csi/external-provisioner/releases/tag/v1.6.0
external-provisioner作用介绍
(1)create pvc时,external-provisioner参与存储资源与pv对象的创建。external-provisioner组件监听到pvc创建事件后,负责拼接请求,调用ceph-csi组件的CreateVolume方法来创建存储,创建存储成功后,创建pv对象;
(2)delete pvc时,external-provisioner参与存储资源与pv对象的删除。当pvc被删除时,pv controller会将其绑定的pv对象状态由bound更新为release,external-provisioner监听到pv更新事件后,调用ceph-csi的DeleteVolume方法来删除存储,并删除pv对象。
external-provisioner源码分析(1)-主体处理逻辑分析
external-provisioner组件中,主要的业务处理逻辑都在provisionController中了,所以对external-provisioner组件的分析,先从provisionController入手。
provisionController主要负责处理claimQueue(也即处理pvc对象的新增与更新事件),根据需要调用ceph-csi组件的CreateVolume方法来创建存储,并创建pv对象;与处理volumeQueue(也即处理pv对象的新增与更新事件),根据pv的状态以及回收策略决定是否调用ceph-csi组件的DeleteVolume方法来删除存储,并删除pv对象。
后续会对claimQueue与volumeQueue进行分析。
main方法中调用了provisionController.Run(wait.NeverStop)
,作为provisionController的分析入口。
provisionController.Run()
provisionController.Run()中定义了run方法并执行。主要关注run方法中的ctrl.runClaimWorker
与ctrl.runVolumeWorker
,这两个方法负责处理主体逻辑。
// Run starts all of this controller's control loops
func (ctrl *ProvisionController) Run(_ <-chan struct{}) {
// TODO: arg is as of 1.12 unused. Nothing can ever be cancelled. Should
// accept a context instead and use it instead of context.TODO(), but would
// break API. Not urgent: realistically, users are simply passing in
// wait.NeverStop() anyway.
run := func(ctx context.Context) {
glog.Infof("Starting provisioner controller %s!", ctrl.component)
defer utilruntime.HandleCrash()
defer ctrl.claimQueue.ShutDown()
defer ctrl.volumeQueue.ShutDown()
ctrl.hasRunLock.Lock()
ctrl.hasRun = true
ctrl.hasRunLock.Unlock()
if ctrl.metricsPort > 0 {
prometheus.MustRegister([]prometheus.Collector{
metrics.PersistentVolumeClaimProvisionTotal,
metrics.PersistentVolumeClaimProvisionFailedTotal,
metrics.PersistentVolumeClaimProvisionDurationSeconds,
metrics.PersistentVolumeDeleteTotal,
metrics.PersistentVolumeDeleteFailedTotal,
metrics.PersistentVolumeDeleteDurationSeconds,
}...)
http.Handle(ctrl.metricsPath, promhttp.Handler())
address := net.JoinHostPort(ctrl.metricsAddress, strconv.FormatInt(int64(ctrl.metricsPort), 10))
glog.Infof("Starting metrics server at %s\n", address)
go wait.Forever(func() {
err := http.ListenAndServe(address, nil)
if err != nil {
glog.Errorf("Failed to listen on %s: %v", address, err)
}
}, 5*time.Second)
}
// If a external SharedInformer has been passed in, this controller
// should not call Run again
if !ctrl.customClaimInformer {
go ctrl.claimInformer.Run(ctx.Done())
}
if !ctrl.customVolumeInformer {
go ctrl.volumeInformer.Run(ctx.Done())
}
if !ctrl.customClassInformer {
go ctrl.classInformer.Run(ctx.Done())
}
if !cache.WaitForCacheSync(ctx.Done(), ctrl.claimInformer.HasSynced, ctrl.volumeInformer.HasSynced, ctrl.classInformer.HasSynced) {
return
}
// 两个worker跑多个goroutine
for i := 0; i < ctrl.threadiness; i++ {
go wait.Until(ctrl.runClaimWorker, time.Second, context.TODO().Done())
go wait.Until(ctrl.runVolumeWorker, time.Second, context.TODO().Done())
}
glog.Infof("Started provisioner controller %s!", ctrl.component)
select {}
}
go ctrl.volumeStore.Run(context.TODO(), DefaultThreadiness)
// 选主相关
if ctrl.leaderElection {
rl, err := resourcelock.New("endpoints",
ctrl.leaderElectionNamespace,
strings.Replace(ctrl.provisionerName, "/", "-", -1),
ctrl.client.CoreV1(),
nil,
resourcelock.ResourceLockConfig{
Identity: ctrl.id,
EventRecorder: ctrl.eventRecorder,
})
if err != nil {
glog.Fatalf("Error creating lock: %v", err)
}
leaderelection.RunOrDie(context.TODO(), leaderelection.LeaderElectionConfig{
Lock: rl,
LeaseDuration: ctrl.leaseDuration,
RenewDeadline: ctrl.renewDeadline,
RetryPeriod: ctrl.retryPeriod,
Callbacks: leaderelection.LeaderCallbacks{
OnStartedLeading: run,
OnStoppedLeading: func() {
glog.Fatalf("leaderelection lost")
},
},
})
panic("unreachable")
} else {
run(context.TODO())
}
}
接下来将分别对run方法中的ctrl.runClaimWorker
与ctrl.runVolumeWorker
进行分析。
1.ctrl.runClaimWorker
根据threadiness的个数,起相应个数的goroutine,运行ctrl.runClaimWorker。
主要负责处理claimQueue,处理pvc对象的新增与更新事件,根据需要调用csi组件的CreateVolume方法来创建存储,并创建pv对象。
for i := 0; i < ctrl.threadiness; i++ {
go wait.Until(ctrl.runClaimWorker, time.Second, context.TODO().Done())
go wait.Until(ctrl.runVolumeWorker, time.Second, context.TODO().Done())
}
// vendor/sigs.k8s.io/sig-storage-lib-external-provisioner/v5/controller/controller.go
func (ctrl *ProvisionController) runClaimWorker() {
// 无限循环processNextClaimWorkItem
for ctrl.processNextClaimWorkItem() {
}
}
调用链:main() --> provisionController.Run() --> ctrl.runClaimWorker() --> ctrl.processNextClaimWorkItem() --> ctrl.syncClaimHandler() --> ctrl.syncClaim() --> ctrl.provisionClaimOperation() --> ctrl.provisioner.Provision()
1.1 ctrl.processNextClaimWorkItem
主要逻辑:
(1)从claimQueue中获取pvc;
(2)调ctrl.syncClaimHandler做进一步处理;
(3)处理成功后,清理该pvc的rateLimiter,并将pvc从claimsInProgress中移除;
(4)处理失败后,会进行一定次数的重试,即将该pvc添加rateLimiter;
(5)最后,无论调ctrl.syncClaimHandler成功与否,将该pvc从claimQueue中移除。
// Map UID -> *PVC with all claims that may be provisioned in the background.
claimsInProgress sync.Map
// processNextClaimWorkItem processes items from claimQueue
func (ctrl *ProvisionController) processNextClaimWorkItem() bool {
// 从claimQueue中获取pvc
obj, shutdown := ctrl.claimQueue.Get()
if shutdown {
return false
}
err := func(obj interface{}) error {
// 最后,无论调ctrl.syncClaimHandler成功与否,将该pvc从claimQueue中移除
defer ctrl.claimQueue.Done(obj)
var key string
var ok bool
if key, ok = obj.(string); !ok {
ctrl.claimQueue.Forget(obj)
return fmt.Errorf("expected string in workqueue but got %#v", obj)
}
// 调ctrl.syncClaimHandler做进一步处理
if err := ctrl.syncClaimHandler(key); err != nil {
// 处理失败后,会进行一定次数的重试,即将该pvc添加rateLimiter
if ctrl.failedProvisionThreshold == 0 {
glog.Warningf("Retrying syncing claim %q, failure %v", key, ctrl.claimQueue.NumRequeues(obj))
ctrl.claimQueue.AddRateLimited(obj)
} else if ctrl.claimQueue.NumRequeues(obj) < ctrl.failedProvisionThreshold {
glog.Warningf("Retrying syncing claim %q because failures %v < threshold %v", key, ctrl.claimQueue.NumRequeues(obj), ctrl.failedProvisionThreshold)
ctrl.claimQueue.AddRateLimited(obj)
} else {
glog.Errorf("Giving up syncing claim %q because failures %v >= threshold %v", key, ctrl.claimQueue.NumRequeues(obj), ctrl.failedProvisionThreshold)
glog.V(2).Infof("Removing PVC %s from claims in progress", key)
ctrl.claimsInProgress.Delete(key) // This can leak a volume that's being provisioned in the background!
// Done but do not Forget: it will not be in the queue but NumRequeues
// will be saved until the obj is deleted from kubernetes
}
return fmt.Errorf("error syncing claim %q: %s", key, err.Error())
}
// 处理成功后,清理该pvc的rateLimiter,并将pvc从claimsInProgress中移除
ctrl.claimQueue.Forget(obj)
// Silently remove the PVC from list of volumes in progress. The provisioning either succeeded
// or the PVC was ignored by this provisioner.
ctrl.claimsInProgress.Delete(key)
return nil
}(obj)
if err != nil {
utilruntime.HandleError(err)
return true
}
return true
}
下面先分析一下claimQueue的相关方法:
(1)Done:从claimQueue中删除
// Done marks item as done processing, and if it has been marked as dirty again
// while it was being processed, it will be re-added to the queue for
// re-processing.
func (q *Type) Done(item interface{}) {
q.cond.L.Lock()
defer q.cond.L.Unlock()
q.metrics.done(item)
q.processing.delete(item)
if q.dirty.has(item) {
q.queue = append(q.queue, item)
q.cond.Signal()
}
}
(2)Forget:仅清理rateLimiter
func (q *rateLimitingType) Forget(item interface{}) {
q.rateLimiter.Forget(item)
}
(3)AddRateLimited:在速率限制器表示可以之后向claimQueue重新加入
// AddRateLimited AddAfter's the item based on the time when the rate limiter says it's ok
func (q *rateLimitingType) AddRateLimited(item interface{}) {
q.DelayingInterface.AddAfter(item, q.rateLimiter.When(item))
}
// AddAfter adds the given item to the work queue after the given delay
func (q *delayingType) AddAfter(item interface{}, duration time.Duration) {
// don't add if we're already shutting down
if q.ShuttingDown() {
return
}
q.metrics.retry()
// immediately add things with no delay
if duration <= 0 {
q.Add(item)
return
}
select {
case <-q.stopCh:
// unblock if ShutDown() is called
case q.waitingForAddCh <- &waitFor{data: item, readyAt: q.clock.Now().Add(duration)}:
}
}
1.1.1 ctrl.syncClaimHandler
最主要是调ctrl.syncClaim
// syncClaimHandler gets the claim from informer's cache then calls syncClaim. A non-nil error triggers requeuing of the claim.
func (ctrl *ProvisionController) syncClaimHandler(key string) error {
objs, err := ctrl.claimsIndexer.ByIndex(uidIndex, key)
if err != nil {
return err
}
var claimObj interface{}
if len(objs) > 0 {
claimObj = objs[0]
} else {
obj, found := ctrl.claimsInProgress.Load(key)
if !found {
utilruntime.HandleError(fmt.Errorf("claim %q in work queue no longer exists", key))
return nil
}
claimObj = obj
}
return ctrl.syncClaim(claimObj)
}
1.1.1.1 ctrl.syncClaim
主要逻辑:
(1)先调用ctrl.shouldProvision判断是否需要provision操作;
(2)调ctrl.provisionClaimOperation做进一步操作。
// syncClaim checks if the claim should have a volume provisioned for it and
// provisions one if so. Returns an error if the claim is to be requeued.
func (ctrl *ProvisionController) syncClaim(obj interface{}) error {
claim, ok := obj.(*v1.PersistentVolumeClaim)
if !ok {
return fmt.Errorf("expected claim but got %+v", obj)
}
should, err := ctrl.shouldProvision(claim)
if err != nil {
ctrl.updateProvisionStats(claim, err, time.Time{})
return err
} else if should {
startTime := time.Now()
status, err := ctrl.provisionClaimOperation(claim)
ctrl.updateProvisionStats(claim, err, startTime)
if err == nil || status == ProvisioningFinished {
// Provisioning is 100% finished / not in progress.
switch err {
case nil:
glog.V(5).Infof("Claim processing succeeded, removing PVC %s from claims in progress", claim.UID)
case errStopProvision:
glog.V(5).Infof("Stop provisioning, removing PVC %s from claims in progress", claim.UID)
// Our caller would requeue if we pass on this special error; return nil instead.
err = nil
default:
glog.V(2).Infof("Final error received, removing PVC %s from claims in progress", claim.UID)
}
ctrl.claimsInProgress.Delete(string(claim.UID))
return err
}
if status == ProvisioningInBackground {
// Provisioning is in progress in background.
glog.V(2).Infof("Temporary error received, adding PVC %s to claims in progress", claim.UID)
ctrl.claimsInProgress.Store(string(claim.UID), claim)
} else {
// status == ProvisioningNoChange.
// Don't change claimsInProgress:
// - the claim is already there if previous status was ProvisioningInBackground.
// - the claim is not there if if previous status was ProvisioningFinished.
}
return err
}
return nil
}
ctrl.shouldProvision
该方法主要判断一个pvc对象是否需要进行provision操作,主要逻辑:
(1)当claim.Spec.VolumeName不为空时,不需要进行provision操作,返回false;
(2)调qualifier.ShouldProvision判断存储driver是否支持provision操作;
(3)如果是Kubernetes 1.5及以上版本,则从pvc的annotation:pv.kubernetes.io/provisioned-by
中获取driver名称,并判断该driver名称是否与该external-provisioner组件的driver名称一致,一致则说明该pvc将由该external-provisioner组件进行底层存储的创建以及pv对象的创建,不一致则不做处理,直接返回。
// shouldProvision returns whether a claim should have a volume provisioned for
// it, i.e. whether a Provision is "desired"
func (ctrl *ProvisionController) shouldProvision(claim *v1.PersistentVolumeClaim) (bool, error) {
if claim.Spec.VolumeName != "" {
return false, nil
}
if qualifier, ok := ctrl.provisioner.(Qualifier); ok {
if !qualifier.ShouldProvision(claim) {
return false, nil
}
}
// Kubernetes 1.5 provisioning with annStorageProvisioner
if ctrl.kubeVersion.AtLeast(utilversion.MustParseSemantic("v1.5.0")) {
if provisioner, found := claim.Annotations[annStorageProvisioner]; found {
if ctrl.knownProvisioner(provisioner) {
claimClass := util.GetPersistentVolumeClaimClass(claim)
class, err := ctrl.getStorageClass(claimClass)
if err != nil {
return false, err
}
if class.VolumeBindingMode != nil && *class.VolumeBindingMode == storage.VolumeBindingWaitForFirstConsumer {
// When claim is in delay binding mode, annSelectedNode is
// required to provision volume.
// Though PV controller set annStorageProvisioner only when
// annSelectedNode is set, but provisioner may remove
// annSelectedNode to notify scheduler to reschedule again.
if selectedNode, ok := claim.Annotations[annSelectedNode]; ok && selectedNode != "" {
return true, nil
}
return false, nil
}
return true, nil
}
}
} else {
// Kubernetes 1.4 provisioning, evaluating class.Provisioner
claimClass := util.GetPersistentVolumeClaimClass(claim)
class, err := ctrl.getStorageClass(claimClass)
if err != nil {
glog.Errorf("Error getting claim %q's StorageClass's fields: %v", claimToClaimKey(claim), err)
return false, err
}
if class.Provisioner != ctrl.provisionerName {
return false, nil
}
return true, nil
}
return false, nil
}
ctrl.provisionClaimOperation
主要逻辑:
(1)从pvc对象中获取storageclass的名称;
(2)拼接pv名称(格式:pvc-{pvc对象的uid});
(3)检查pv是否已经存在,存在则直接返回;
(4)从pvc对象中获取信息构造claimRef(用于后续拼接pv对象);
(5)检查是否支持动态创建存储;
(6)获取storageclass对象;
(7)检查storageclass对象中的provisioner是否已注册;
(8)构造options结构体;
(9)开始调用provision方法,返回pv对象结构体;
(10)pv对象结构体额外信息添加;
(11)发送创建pv对象的请求给apiserver。
// provisionClaimOperation attempts to provision a volume for the given claim.
// Returns nil error only when the volume was provisioned (in which case it also returns ProvisioningFinished),
// a normal error when the volume was not provisioned and provisioning should be retried (requeue the claim),
// or the special errStopProvision when provisioning was impossible and no further attempts to provision should be tried.
func (ctrl *ProvisionController) provisionClaimOperation(claim *v1.PersistentVolumeClaim) (ProvisioningState, error) {
// Most code here is identical to that found in controller.go of kube's PV controller...
// 从pvc对象中获取storageclass的名称
claimClass := util.GetPersistentVolumeClaimClass(claim)
operation := fmt.Sprintf("provision %q class %q", claimToClaimKey(claim), claimClass)
glog.Info(logOperation(operation, "started"))
// 检查pv是否已经存在
pvName := ctrl.getProvisionedVolumeNameForClaim(claim)
volume, err := ctrl.client.CoreV1().PersistentVolumes().Get(pvName, metav1.GetOptions{})
if err == nil && volume != nil {
// Volume has been already provisioned, nothing to do.
glog.Info(logOperation(operation, "persistentvolume %q already exists, skipping", pvName))
return ProvisioningFinished, errStopProvision
}
// 从pvc对象中获取信息构造claimRef
claimRef, err := ref.GetReference(scheme.Scheme, claim)
if err != nil {
glog.Error(logOperation(operation, "unexpected error getting claim reference: %v", err))
return ProvisioningNoChange, err
}
// 检查是否支持动态创建存储
if err = ctrl.canProvision(claim); err != nil {
ctrl.eventRecorder.Event(claim, v1.EventTypeWarning, "ProvisioningFailed", err.Error())
glog.Error(logOperation(operation, "failed to provision volume: %v", err))
return ProvisioningFinished, errStopProvision
}
// 获取storageclass对象
class, err := ctrl.getStorageClass(claimClass)
if err != nil {
glog.Error(logOperation(operation, "error getting claim's StorageClass's fields: %v", err))
return ProvisioningFinished, err
}
// 检查storageclass对象中的provisioner是否已注册
if !ctrl.knownProvisioner(class.Provisioner) {
// class.Provisioner has either changed since shouldProvision() or
// annDynamicallyProvisioned contains different provisioner than
// class.Provisioner.
glog.Error(logOperation(operation, "unknown provisioner %q requested in claim's StorageClass", class.Provisioner))
return ProvisioningFinished, errStopProvision
}
// 指定节点相关操作
var selectedNode *v1.Node
if ctrl.kubeVersion.AtLeast(utilversion.MustParseSemantic("v1.11.0")) {
// Get SelectedNode
if nodeName, ok := getString(claim.Annotations, annSelectedNode, annAlphaSelectedNode); ok {
selectedNode, err = ctrl.client.CoreV1().Nodes().Get(nodeName, metav1.GetOptions{}) // TODO (verult) cache Nodes
if err != nil {
err = fmt.Errorf("failed to get target node: %v", err)
ctrl.eventRecorder.Event(claim, v1.EventTypeWarning, "ProvisioningFailed", err.Error())
return ProvisioningNoChange, err
}
}
}
// 构造options结构体
options := ProvisionOptions{
StorageClass: class,
PVName: pvName,
PVC: claim,
SelectedNode: selectedNode,
}
ctrl.eventRecorder.Event(claim, v1.EventTypeNormal, "Provisioning", fmt.Sprintf("External provisioner is provisioning volume for claim %q", claimToClaimKey(claim)))
// 开始调用provision方法,返回pv对象结构体
result := ProvisioningFinished
if p, ok := ctrl.provisioner.(ProvisionerExt); ok {
volume, result, err = p.ProvisionExt(options)
} else {
volume, err = ctrl.provisioner.Provision(options)
}
if err != nil {
if ierr, ok := err.(*IgnoredError); ok {
// Provision ignored, do nothing and hope another provisioner will provision it.
glog.Info(logOperation(operation, "volume provision ignored: %v", ierr))
return ProvisioningFinished, errStopProvision
}
err = fmt.Errorf("failed to provision volume with StorageClass %q: %v", claimClass, err)
ctrl.eventRecorder.Event(claim, v1.EventTypeWarning, "ProvisioningFailed", err.Error())
if _, ok := claim.Annotations[annSelectedNode]; ok && result == ProvisioningReschedule {
// For dynamic PV provisioning with delayed binding, the provisioner may fail
// because the node is wrong (permanent error) or currently unusable (not enough
// capacity). If the provisioner wants to give up scheduling with the currently
// selected node, then it can ask for that by returning ProvisioningReschedule
// as state.
//
// `selectedNode` must be removed to notify scheduler to schedule again.
if errLabel := ctrl.rescheduleProvisioning(claim); errLabel != nil {
glog.Info(logOperation(operation, "volume rescheduling failed: %v", errLabel))
// If unsetting that label fails in ctrl.rescheduleProvisioning, we
// keep the volume in the work queue as if the provisioner had
// returned ProvisioningFinished and simply try again later.
return ProvisioningFinished, err
}
// Label was removed, stop working on the volume.
glog.Info(logOperation(operation, "volume rescheduled because: %v", err))
return ProvisioningFinished, errStopProvision
}
// ProvisioningReschedule shouldn't have been returned for volumes without selected node,
// but if we get it anyway, then treat it like ProvisioningFinished because we cannot
// reschedule.
if result == ProvisioningReschedule {
result = ProvisioningFinished
}
return result, err
}
glog.Info(logOperation(operation, "volume %q provisioned", volume.Name))
// pv对象结构体额外信息添加
// Set ClaimRef and the PV controller will bind and set annBoundByController for us
volume.Spec.ClaimRef = claimRef
// Add external provisioner finalizer if it doesn't already have it
if ctrl.addFinalizer && !ctrl.checkFinalizer(volume, finalizerPV) {
volume.ObjectMeta.Finalizers = append(volume.ObjectMeta.Finalizers, finalizerPV)
}
metav1.SetMetaDataAnnotation(&volume.ObjectMeta, annDynamicallyProvisioned, ctrl.provisionerName)
if ctrl.kubeVersion.AtLeast(utilversion.MustParseSemantic("v1.6.0")) {
volume.Spec.StorageClassName = claimClass
} else {
metav1.SetMetaDataAnnotation(&volume.ObjectMeta, annClass, claimClass)
}
glog.Info(logOperation(operation, "succeeded"))
// 创建pv到apiserver
if err := ctrl.volumeStore.StoreVolume(claim, volume); err != nil {
return ProvisioningFinished, err
}
return ProvisioningFinished, nil
}
ctrl.provisioner.Provision:
Provision方法主要是调用csi的CreateVolume方法来创建存储,并返回pv对象结构体。
主要逻辑:
(1)调用p.checkDriverCapabilities检测driver提供的能力;
(2)构建pv对象名称;
(3)从StorageClass.Parameters中获取fstype并校验;
(4)从pvc中获取存储申请大小;
(5)构建CreateVolumeRequest结构体;
(6)获取provisioner、controllerPublish、nodeStage、nodePublish、controllerExpand操作对应的secret的名称与命名空间;
(7)从apiserver获取provisioner对应的secret对象,存放进CreateVolumeRequest结构体;
(8)去除部分StorageClass.Parameters中的参数,然后存放进CreateVolumeRequest结构体;
(9)调用p.csiClient.CreateVolume(也即调用ceph-csi的CreateVolume方法)来创建ceph存储;
(10)存储创建成功后,校验创建的大小是否符合需求;
(11)构建pv对象结构体并返回。
func (p *csiProvisioner) Provision(options controller.ProvisionOptions) (*v1.PersistentVolume, error) {
// The controller should call ProvisionExt() instead, but just in case...
pv, _, err := p.ProvisionExt(options)
return pv, err
}
func (p *csiProvisioner) ProvisionExt(options controller.ProvisionOptions) (*v1.PersistentVolume, controller.ProvisioningState, error) {
if options.StorageClass == nil {
return nil, controller.ProvisioningFinished, errors.New("storage class was nil")
}
if options.PVC.Annotations[annStorageProvisioner] != p.driverName && options.PVC.Annotations[annMigratedTo] != p.driverName {
// The storage provisioner annotation may not equal driver name but the
// PVC could have annotation "migrated-to" which is the new way to
// signal a PVC is migrated (k8s v1.17+)
return nil, controller.ProvisioningFinished, &controller.IgnoredError{
Reason: fmt.Sprintf("PVC annotated with external-provisioner name %s does not match provisioner driver name %s. This could mean the PVC is not migrated",
options.PVC.Annotations[annStorageProvisioner],
p.driverName),
}
}
migratedVolume := false
if p.supportsMigrationFromInTreePluginName != "" {
// NOTE: we cannot depend on PVC.Annotations[volume.beta.kubernetes.io/storage-provisioner] to get
// the in-tree provisioner name in case of CSI migration scenarios. The annotation will be
// set to the CSI provisioner name by PV controller for migration scenarios
// so that external provisioner can correctly pick up the PVC pointing to an in-tree plugin
if options.StorageClass.Provisioner == p.supportsMigrationFromInTreePluginName {
klog.V(2).Infof("translating storage class for in-tree plugin %s to CSI", options.StorageClass.Provisioner)
storageClass, err := p.translator.TranslateInTreeStorageClassToCSI(p.supportsMigrationFromInTreePluginName, options.StorageClass)
if err != nil {
return nil, controller.ProvisioningFinished, fmt.Errorf("failed to translate storage class: %v", err)
}
options.StorageClass = storageClass
migratedVolume = true
} else {
klog.V(4).Infof("skip translation of storage class for plugin: %s", options.StorageClass.Provisioner)
}
}
// Make sure the plugin is capable of fulfilling the requested options
rc := &requiredCapabilities{}
if options.PVC.Spec.DataSource != nil {
// PVC.Spec.DataSource.Name is the name of the VolumeSnapshot API object
if options.PVC.Spec.DataSource.Name == "" {
return nil, controller.ProvisioningFinished, fmt.Errorf("the PVC source not found for PVC %s", options.PVC.Name)
}
switch options.PVC.Spec.DataSource.Kind {
case snapshotKind:
if *(options.PVC.Spec.DataSource.APIGroup) != snapshotAPIGroup {
return nil, controller.ProvisioningFinished, fmt.Errorf("the PVC source does not belong to the right APIGroup. Expected %s, Got %s", snapshotAPIGroup, *(options.PVC.Spec.DataSource.APIGroup))
}
rc.snapshot = true
case pvcKind:
rc.clone = true
default:
klog.Infof("Unsupported DataSource specified (%s), the provisioner won't act on this request", options.PVC.Spec.DataSource.Kind)
}
}
if err := p.checkDriverCapabilities(rc); err != nil {
return nil, controller.ProvisioningFinished, err
}
if options.PVC.Spec.Selector != nil {
return nil, controller.ProvisioningFinished, fmt.Errorf("claim Selector is not supported")
}
pvName, err := makeVolumeName(p.volumeNamePrefix, fmt.Sprintf("%s", options.PVC.ObjectMeta.UID), p.volumeNameUUIDLength)
if err != nil {
return nil, controller.ProvisioningFinished, err
}
fsTypesFound := 0
fsType := ""
for k, v := range options.StorageClass.Parameters {
if strings.ToLower(k) == "fstype" || k == prefixedFsTypeKey {
fsType = v
fsTypesFound++
}
if strings.ToLower(k) == "fstype" {
klog.Warningf(deprecationWarning("fstype", prefixedFsTypeKey, ""))
}
}
if fsTypesFound > 1 {
return nil, controller.ProvisioningFinished, fmt.Errorf("fstype specified in parameters with both \"fstype\" and \"%s\" keys", prefixedFsTypeKey)
}
if len(fsType) == 0 {
fsType = defaultFSType
}
capacity := options.PVC.Spec.Resources.Requests[v1.ResourceName(v1.ResourceStorage)]
volSizeBytes := capacity.Value()
// add by zhongjialiang, if it is rbd request and fstype is xfs, we will check volume request size, it need to be equal or larger than 1G
// because if the request size is less than 1G, it may occur an error when kubelet call NodeStageVolume(ceph-csi)
// failed to run mkfs error: exit status 1, output: agsize (xxxx blocks) too small, need at least 4096 blocks
//
// issue: https://git-sa.nie.netease.com/venice/ceph-csi/issues/105
klog.Infof("request volume size is %s (volSizeBytes: %d)", capacity.String(), volSizeBytes)
if isRbdRequest(options.StorageClass.Parameters) && fsType == xfsFSType && volSizeBytes < oneGi {
return nil, controller.ProvisioningFinished, fmt.Errorf("fstype xfs volume size request must be equal or larger than 1Gi, but your volume size request is %s ", capacity.String())
}
// Get access mode
volumeCaps := make([]*csi.VolumeCapability, 0)
for _, pvcAccessMode := range options.PVC.Spec.AccessModes {
volumeCaps = append(volumeCaps, getVolumeCapability(options, pvcAccessMode, fsType))
}
// Create a CSI CreateVolumeRequest and Response
req := csi.CreateVolumeRequest{
Name: pvName,
Parameters: options.StorageClass.Parameters,
VolumeCapabilities: volumeCaps,
CapacityRange: &csi.CapacityRange{
RequiredBytes: int64(volSizeBytes),
},
}
if options.PVC.Spec.DataSource != nil && (rc.clone || rc.snapshot) {
volumeContentSource, err := p.getVolumeContentSource(options)
if err != nil {
return nil, controller.ProvisioningNoChange, fmt.Errorf("error getting handle for DataSource Type %s by Name %s: %v", options.PVC.Spec.DataSource.Kind, options.PVC.Spec.DataSource.Name, err)
}
req.VolumeContentSource = volumeContentSource
}
if options.PVC.Spec.DataSource != nil && rc.clone {
err = p.setCloneFinalizer(options.PVC)
if err != nil {
return nil, controller.ProvisioningNoChange, err
}
}
if p.supportsTopology() {
requirements, err := GenerateAccessibilityRequirements(
p.client,
p.driverName,
options.PVC.Name,
options.StorageClass.AllowedTopologies,
options.SelectedNode,
p.strictTopology,
p.csiNodeLister,
p.nodeLister)
if err != nil {
return nil, controller.ProvisioningNoChange, fmt.Errorf("error generating accessibility requirements: %v", err)
}
req.AccessibilityRequirements = requirements
}
klog.V(5).Infof("CreateVolumeRequest %+v", req)
rep := &csi.CreateVolumeResponse{}
// Resolve provision secret credentials.
provisionerSecretRef, err := getSecretReference(provisionerSecretParams, options.StorageClass.Parameters, pvName, options.PVC)
if err != nil {
return nil, controller.ProvisioningNoChange, err
}
provisionerCredentials, err := getCredentials(p.client, provisionerSecretRef)
if err != nil {
return nil, controller.ProvisioningNoChange, err
}
req.Secrets = provisionerCredentials
// Resolve controller publish, node stage, node publish secret references
controllerPublishSecretRef, err := getSecretReference(controllerPublishSecretParams, options.StorageClass.Parameters, pvName, options.PVC)
if err != nil {
return nil, controller.ProvisioningNoChange, err
}
nodeStageSecretRef, err := getSecretReference(nodeStageSecretParams, options.StorageClass.Parameters, pvName, options.PVC)
if err != nil {
return nil, controller.ProvisioningNoChange, err
}
nodePublishSecretRef, err := getSecretReference(nodePublishSecretParams, options.StorageClass.Parameters, pvName, options.PVC)
if err != nil {
return nil, controller.ProvisioningNoChange, err
}
controllerExpandSecretRef, err := getSecretReference(controllerExpandSecretParams, options.StorageClass.Parameters, pvName, options.PVC)
if err != nil {
return nil, controller.ProvisioningNoChange, err
}
req.Parameters, err = removePrefixedParameters(options.StorageClass.Parameters)
if err != nil {
return nil, controller.ProvisioningFinished, fmt.Errorf("failed to strip CSI Parameters of prefixed keys: %v", err)
}
if p.extraCreateMetadata {
// add pvc and pv metadata to request for use by the plugin
req.Parameters[pvcNameKey] = options.PVC.GetName()
req.Parameters[pvcNamespaceKey] = options.PVC.GetNamespace()
req.Parameters[pvNameKey] = pvName
}
ctx, cancel := context.WithTimeout(context.Background(), p.timeout)
defer cancel()
rep, err = p.csiClient.CreateVolume(ctx, &req)
if err != nil {
// Giving up after an error and telling the pod scheduler to retry with a different node
// only makes sense if:
// - The CSI driver supports topology: without that, the next CreateVolume call after
// rescheduling will be exactly the same.
// - We are working on a volume with late binding: only in that case will
// provisioning be retried if we give up for now.
// - The error is one where rescheduling is
// a) allowed (i.e. we don't have to keep calling CreateVolume because the operation might be running) and
// b) it makes sense (typically local resource exhausted).
// isFinalError is going to check this.
//
// We do this regardless whether the driver has asked for strict topology because
// even drivers which did not ask for it explicitly might still only look at the first
// topology entry and thus succeed after rescheduling.
mayReschedule := p.supportsTopology() &&
options.SelectedNode != nil
state := checkError(err, mayReschedule)
klog.V(5).Infof("CreateVolume failed, supports topology = %v, node selected %v => may reschedule = %v => state = %v: %v",
p.supportsTopology(),
options.SelectedNode != nil,
mayReschedule,
state,
err)
return nil, state, err
}
if rep.Volume != nil {
klog.V(3).Infof("create volume rep: %+v", *rep.Volume)
}
volumeAttributes := map[string]string{provisionerIDKey: p.identity}
for k, v := range rep.Volume.VolumeContext {
volumeAttributes[k] = v
}
respCap := rep.GetVolume().GetCapacityBytes()
//According to CSI spec CreateVolume should be able to return capacity = 0, which means it is unknown. for example NFS/FTP
if respCap == 0 {
respCap = volSizeBytes
klog.V(3).Infof("csiClient response volume with size 0, which is not supported by apiServer, will use claim size:%d", respCap)
} else if respCap < volSizeBytes {
capErr := fmt.Errorf("created volume capacity %v less than requested capacity %v", respCap, volSizeBytes)
delReq := &csi.DeleteVolumeRequest{
VolumeId: rep.GetVolume().GetVolumeId(),
}
err = cleanupVolume(p, delReq, provisionerCredentials)
if err != nil {
capErr = fmt.Errorf("%v. Cleanup of volume %s failed, volume is orphaned: %v", capErr, pvName, err)
}
// use InBackground to retry the call, hoping the volume is deleted correctly next time.
return nil, controller.ProvisioningInBackground, capErr
}
if options.PVC.Spec.DataSource != nil {
contentSource := rep.GetVolume().ContentSource
if contentSource == nil {
sourceErr := fmt.Errorf("volume content source missing")
delReq := &csi.DeleteVolumeRequest{
VolumeId: rep.GetVolume().GetVolumeId(),
}
err = cleanupVolume(p, delReq, provisionerCredentials)
if err != nil {
sourceErr = fmt.Errorf("%v. cleanup of volume %s failed, volume is orphaned: %v", sourceErr, pvName, err)
}
return nil, controller.ProvisioningInBackground, sourceErr
}
}
pv := &v1.PersistentVolume{
ObjectMeta: metav1.ObjectMeta{
Name: pvName,
},
Spec: v1.PersistentVolumeSpec{
AccessModes: options.PVC.Spec.AccessModes,
MountOptions: options.StorageClass.MountOptions,
Capacity: v1.ResourceList{
v1.ResourceName(v1.ResourceStorage): bytesToGiQuantity(respCap),
},
// TODO wait for CSI VolumeSource API
PersistentVolumeSource: v1.PersistentVolumeSource{
CSI: &v1.CSIPersistentVolumeSource{
Driver: p.driverName,
VolumeHandle: p.volumeIdToHandle(rep.Volume.VolumeId),
VolumeAttributes: volumeAttributes,
ControllerPublishSecretRef: controllerPublishSecretRef,
NodeStageSecretRef: nodeStageSecretRef,
NodePublishSecretRef: nodePublishSecretRef,
ControllerExpandSecretRef: controllerExpandSecretRef,
},
},
},
}
if options.StorageClass.ReclaimPolicy != nil {
pv.Spec.PersistentVolumeReclaimPolicy = *options.StorageClass.ReclaimPolicy
}
if p.supportsTopology() {
pv.Spec.NodeAffinity = GenerateVolumeNodeAffinity(rep.Volume.AccessibleTopology)
}
// Set VolumeMode to PV if it is passed via PVC spec when Block feature is enabled
if options.PVC.Spec.VolumeMode != nil {
pv.Spec.VolumeMode = options.PVC.Spec.VolumeMode
}
// Set FSType if PV is not Block Volume
if !util.CheckPersistentVolumeClaimModeBlock(options.PVC) {
pv.Spec.PersistentVolumeSource.CSI.FSType = fsType
}
klog.V(2).Infof("successfully created PV %v for PVC %v and csi volume name %v", pv.Name, options.PVC.Name, pv.Spec.CSI.VolumeHandle)
if migratedVolume {
pv, err = p.translator.TranslateCSIPVToInTree(pv)
if err != nil {
klog.Warningf("failed to translate CSI PV to in-tree due to: %v. Deleting provisioned PV", err)
deleteErr := p.Delete(pv)
if deleteErr != nil {
klog.Warningf("failed to delete partly provisioned PV: %v", deleteErr)
// Retry the call again to clean up the orphan
return nil, controller.ProvisioningInBackground, err
}
return nil, controller.ProvisioningFinished, err
}
}
klog.V(5).Infof("successfully created PV %+v", pv.Spec.PersistentVolumeSource)
return pv, controller.ProvisioningFinished, nil
}
2.ctrl.runVolumeWorker
根据threadiness的个数,起相应个数的goroutine,运行ctrl.runVolumeWorker。
主要负责处理volumeQueue,处理pv对象的新增与更新事件,根据需要调用csi组件的DeleteVolume方法来删除存储,并删除pv对象)。
for i := 0; i < ctrl.threadiness; i++ {
go wait.Until(ctrl.runClaimWorker, time.Second, context.TODO().Done())
go wait.Until(ctrl.runVolumeWorker, time.Second, context.TODO().Done())
}
// vendor/sigs.k8s.io/sig-storage-lib-external-provisioner/v5/controller/controller.go
func (ctrl *ProvisionController) runClaimWorker() {
// 无限循环ctrl.processNextClaimWorkItem
for ctrl.processNextClaimWorkItem() {
}
}
调用链:main() --> provisionController.Run() --> ctrl.runVolumeWorker() --> ctrl.processNextVolumeWorkItem() --> ctrl.syncVolumeHandler() --> ctrl.syncVolume() --> ctrl.deleteVolumeOperation() --> ctrl.provisioner.Delete()
2.1 crtl.processNextVolumeWorkItem
主要逻辑:
(1)从volumeQueue中获取pv;
(2)调ctrl.syncClaimHandler做进一步处理;
(3)处理成功后,清理该pv的rateLimiter;
(4)处理失败后,会进行一定次数的重试,即将该pv添加rateLimiter;
(5)最后,无论调ctrl.syncVolumeHandler成功与否,将该pv从volumeQueue中移除。
主要是调ctrl.syncVolumeHandler
// processNextVolumeWorkItem processes items from volumeQueue
func (ctrl *ProvisionController) processNextVolumeWorkItem() bool {
// 从volumeQueue中获取pv
obj, shutdown := ctrl.volumeQueue.Get()
if shutdown {
return false
}
err := func(obj interface{}) error {
// 最后,无论调ctrl.syncVolumeHandler成功与否,将该pv从volumeQueue中移除
defer ctrl.volumeQueue.Done(obj)
var key string
var ok bool
if key, ok = obj.(string); !ok {
ctrl.volumeQueue.Forget(obj)
return fmt.Errorf("expected string in workqueue but got %#v", obj)
}
// 调ctrl.syncVolumeHandler做进一步处理
if err := ctrl.syncVolumeHandler(key); err != nil {
// 处理失败后,会进行一定次数的重试,即将该pv添加rateLimiter
if ctrl.failedDeleteThreshold == 0 {
glog.Warningf("Retrying syncing volume %q, failure %v", key, ctrl.volumeQueue.NumRequeues(obj))
ctrl.volumeQueue.AddRateLimited(obj)
} else if ctrl.volumeQueue.NumRequeues(obj) < ctrl.failedDeleteThreshold {
glog.Warningf("Retrying syncing volume %q because failures %v < threshold %v", key, ctrl.volumeQueue.NumRequeues(obj), ctrl.failedDeleteThreshold)
ctrl.volumeQueue.AddRateLimited(obj)
} else {
glog.Errorf("Giving up syncing volume %q because failures %v >= threshold %v", key, ctrl.volumeQueue.NumRequeues(obj), ctrl.failedDeleteThreshold)
// Done but do not Forget: it will not be in the queue but NumRequeues
// will be saved until the obj is deleted from kubernetes
}
return fmt.Errorf("error syncing volume %q: %s", key, err.Error())
}
// 处理成功后,清理该pv的rateLimiter
ctrl.volumeQueue.Forget(obj)
return nil
}(obj)
if err != nil {
utilruntime.HandleError(err)
return true
}
return true
}
2.1.1 ctrl.syncVolumeHandler
主要是调ctrl.syncVolume
// syncVolumeHandler gets the volume from informer's cache then calls syncVolume
func (ctrl *ProvisionController) syncVolumeHandler(key string) error {
volumeObj, exists, err := ctrl.volumes.GetByKey(key)
if err != nil {
return err
}
if !exists {
utilruntime.HandleError(fmt.Errorf("volume %q in work queue no longer exists", key))
return nil
}
return ctrl.syncVolume(volumeObj)
}
2.1.1.1 ctrl.syncVolume
主要逻辑:
(1)调ctrl.shouldDelete判断是否要进行删除动作;
(2)要进行删除动作,则调ctrl.deleteVolumeOperation。
// syncVolume checks if the volume should be deleted and deletes if so
func (ctrl *ProvisionController) syncVolume(obj interface{}) error {
volume, ok := obj.(*v1.PersistentVolume)
if !ok {
return fmt.Errorf("expected volume but got %+v", obj)
}
if ctrl.shouldDelete(volume) {
startTime := time.Now()
err := ctrl.deleteVolumeOperation(volume)
ctrl.updateDeleteStats(volume, err, startTime)
return err
}
return nil
}
ctrl.shouldDelete
主要逻辑:
(1)判断provisioner是否授权删除动作;
(2)1.9+版本k8s中,做PV protection相关校验(Finalizer相关判断);
(3)1.5+版本k8s中,当pv的state不是Released或Failed时,返回false;
(4)判断pv的回收策略是否为delete,不是则返回false;
(5)从pvc的annotation:pv.kubernetes.io/provisioned-by
中获取driver名称,并判断该driver名称是否与该external-provisioner组件的driver名称一致,一致则说明该pvc将由该external-provisioner组件进行底层存储的删除以及pv对象的删除,不一致则不做处理,直接返回。
// shouldDelete returns whether a volume should have its backing volume
// deleted, i.e. whether a Delete is "desired"
func (ctrl *ProvisionController) shouldDelete(volume *v1.PersistentVolume) bool {
// 判断provisioner是否授权删除动作
if deletionGuard, ok := ctrl.provisioner.(DeletionGuard); ok {
if !deletionGuard.ShouldDelete(volume) {
return false
}
}
// In 1.9+ PV protection means the object will exist briefly with a
// deletion timestamp even after our successful Delete. Ignore it.
if ctrl.kubeVersion.AtLeast(utilversion.MustParseSemantic("v1.9.0")) {
if ctrl.addFinalizer && !ctrl.checkFinalizer(volume, finalizerPV) && volume.ObjectMeta.DeletionTimestamp != nil {
return false
} else if volume.ObjectMeta.DeletionTimestamp != nil {
return false
}
}
// In 1.5+ we delete only if the volume is in state Released. In 1.4 we must
// delete if the volume is in state Failed too.
if ctrl.kubeVersion.AtLeast(utilversion.MustParseSemantic("v1.5.0")) {
if volume.Status.Phase != v1.VolumeReleased {
return false
}
} else {
if volume.Status.Phase != v1.VolumeReleased && volume.Status.Phase != v1.VolumeFailed {
return false
}
}
// 判断回收策略是否为delete,不是则返回false
if volume.Spec.PersistentVolumeReclaimPolicy != v1.PersistentVolumeReclaimDelete {
return false
}
if !metav1.HasAnnotation(volume.ObjectMeta, annDynamicallyProvisioned) {
return false
}
ann := volume.Annotations[annDynamicallyProvisioned]
migratedTo := volume.Annotations[annMigratedTo]
if ann != ctrl.provisionerName && migratedTo != ctrl.provisionerName {
return false
}
return true
}
2.1.1.2 crtl.deleteVolumeOperation
主要逻辑:
(1)调provisioner.Delete删除rbd image;
(2)从apiserver中删除pv对象;
(3)Finalizer相关处理。
// deleteVolumeOperation attempts to delete the volume backing the given
// volume. Returns error, which indicates whether deletion should be retried
// (requeue the volume) or not
func (ctrl *ProvisionController) deleteVolumeOperation(volume *v1.PersistentVolume) error {
operation := fmt.Sprintf("delete %q", volume.Name)
glog.Info(logOperation(operation, "started"))
// This method may have been waiting for a volume lock for some time.
// Our check does not have to be as sophisticated as PV controller's, we can
// trust that the PV controller has set the PV to Released/Failed and it's
// ours to delete
newVolume, err := ctrl.client.CoreV1().PersistentVolumes().Get(volume.Name, metav1.GetOptions{})
if err != nil {
return nil
}
if !ctrl.shouldDelete(newVolume) {
glog.Info(logOperation(operation, "persistentvolume no longer needs deletion, skipping"))
return nil
}
err = ctrl.provisioner.Delete(volume)
if err != nil {
if ierr, ok := err.(*IgnoredError); ok {
// Delete ignored, do nothing and hope another provisioner will delete it.
glog.Info(logOperation(operation, "volume deletion ignored: %v", ierr))
return nil
}
// Delete failed, emit an event.
glog.Error(logOperation(operation, "volume deletion failed: %v", err))
ctrl.eventRecorder.Event(volume, v1.EventTypeWarning, "VolumeFailedDelete", err.Error())
return err
}
glog.Info(logOperation(operation, "volume deleted"))
// Delete the volume
if err = ctrl.client.CoreV1().PersistentVolumes().Delete(volume.Name, nil); err != nil {
// Oops, could not delete the volume and therefore the controller will
// try to delete the volume again on next update.
glog.Info(logOperation(operation, "failed to delete persistentvolume: %v", err))
return err
}
if ctrl.addFinalizer {
if len(newVolume.ObjectMeta.Finalizers) > 0 {
// Remove external-provisioner finalizer
// need to get the pv again because the delete has updated the object with a deletion timestamp
newVolume, err := ctrl.client.CoreV1().PersistentVolumes().Get(volume.Name, metav1.GetOptions{})
if err != nil {
// If the volume is not found return, otherwise error
if !apierrs.IsNotFound(err) {
glog.Info(logOperation(operation, "failed to get persistentvolume to update finalizer: %v", err))
return err
}
return nil
}
finalizers := make([]string, 0)
for _, finalizer := range newVolume.ObjectMeta.Finalizers {
if finalizer != finalizerPV {
finalizers = append(finalizers, finalizer)
}
}
// Only update the finalizers if we actually removed something
if len(finalizers) != len(newVolume.ObjectMeta.Finalizers) {
newVolume.ObjectMeta.Finalizers = finalizers
if _, err = ctrl.client.CoreV1().PersistentVolumes().Update(newVolume); err != nil {
if !apierrs.IsNotFound(err) {
// Couldn't remove finalizer and the object still exists, the controller may
// try to remove the finalizer again on the next update
glog.Info(logOperation(operation, "failed to remove finalizer for persistentvolume: %v", err))
return err
}
}
}
}
}
glog.Info(logOperation(operation, "persistentvolume deleted"))
glog.Info(logOperation(operation, "succeeded"))
return nil
}
ctrl.provisioner.Delete主要是调ceph-csi组件的DeleteVolume来删除存储。
主要逻辑:
(1)获取volumeId;
(2)构建DeleteVolumeRequest请求结构体;
(3)从apiserver中获取删除存储所需的secret对象,并存放进DeleteVolumeRequest请求结构体;
(4)调用p.csiClient.DeleteVolume(也即调用ceph-csi的DeleteVolume方法)来删除存储。
func (p *csiProvisioner) Delete(volume *v1.PersistentVolume) error {
if volume == nil {
return fmt.Errorf("invalid CSI PV")
}
var err error
if p.translator.IsPVMigratable(volume) {
// we end up here only if CSI migration is enabled in-tree (both overall
// and for the specific plugin that is migratable) causing in-tree PV
// controller to yield deletion of PVs with in-tree source to external provisioner
// based on AnnDynamicallyProvisioned annotation.
volume, err = p.translator.TranslateInTreePVToCSI(volume)
if err != nil {
return err
}
}
if volume.Spec.CSI == nil {
return fmt.Errorf("invalid CSI PV")
}
volumeId := p.volumeHandleToId(volume.Spec.CSI.VolumeHandle)
rc := &requiredCapabilities{}
if err := p.checkDriverCapabilities(rc); err != nil {
return err
}
req := csi.DeleteVolumeRequest{
VolumeId: volumeId,
}
// get secrets if StorageClass specifies it
storageClassName := util.GetPersistentVolumeClass(volume)
if len(storageClassName) != 0 {
if storageClass, err := p.scLister.Get(storageClassName); err == nil {
// edit by zhongjialiang
// issue: https://git-sa.nie.netease.com/venice/ceph-csi/issues/85
secretParams := provisionerSecretParams
if isRbdRequest(storageClass.Parameters) {
secretParams = deleteSecretParams
}
// Resolve provision secret credentials.
provisionerSecretRef, err := getSecretReference(secretParams, storageClass.Parameters, volume.Name, &v1.PersistentVolumeClaim{
ObjectMeta: metav1.ObjectMeta{
Name: volume.Spec.ClaimRef.Name,
Namespace: volume.Spec.ClaimRef.Namespace,
},
})
if err != nil {
return fmt.Errorf("failed to get secretreference for volume %s: %v", volume.Name, err)
}
credentials, err := getCredentials(p.client, provisionerSecretRef)
if err != nil {
// Continue with deletion, as the secret may have already been deleted.
klog.Errorf("Failed to get credentials for volume %s: %s", volume.Name, err.Error())
}
req.Secrets = credentials
} else {
klog.Warningf("failed to get storageclass: %s, proceeding to delete without secrets. %v", storageClassName, err)
}
}
ctx, cancel := context.WithTimeout(context.Background(), p.timeout)
defer cancel()
_, err = p.csiClient.DeleteVolume(ctx, &req)
return err
}
到这里,对external-provisioner的provisionController的分析就结束了,下面将对provisionController的分析做一个简单的总结。
总结
provisionController主要负责处理以下两个队列:
(1)claimQueue
存放pvc对象的新增与更新事件,provisionController处理该队列时只处理annotation:pv.kubernetes.io/provisioned-by
中的值与external-provisioner组件的driver名称一致的pvc对象,对符合条件的pvc对象,调用ceph-csi组件的CreateVolume方法来创建存储,并创建pv对象;
(2)volumeQueue
存放pv对象的新增与更新事件,provisionController处理该队列时只处理annotation:pv.kubernetes.io/provisioned-by
中的值与external-provisioner组件的driver名称一致的pvc对象,根据pv的状态以及回收策略决定是否调用ceph-csi组件的DeleteVolume方法来删除存储,并删除pv对象。