Bridges

Bridges

题目描述

 

YYD为了减肥,他来到了瘦海,这是一个巨大的海,海中有n个小岛,小岛之间有m座桥连接,两个小岛之间不会有两座桥,并且从一个小岛可以到另外任意一个小岛。现在YYD想骑单车从小岛1出发,骑过每一座桥,到达每一个小岛,然后回到小岛1。霸中同学为了让YYD减肥成功,召唤了大风,由于是海上,风变得十分大,经过每一座桥都有不可避免的风阻碍YYD,YYD十分ddt,于是用泡芙贿赂了你,希望你能帮他找出一条承受的最大风力最小的路线。

 

 

输入

 

输入:第一行为两个用空格隔开的整数n(2<=n<=1000),m(1<=m<=2000),

            接下来读入m行由空格隔开的4个整数a,b(1<=a,b<=n,a<>b),c,d(1<=c,d<=1000),

             表示第i+1行第i座桥连接小岛a和b,从a到b承受的风力为c,从b到a承受的风力为d。

 

 

输出

 

输出:如果无法完成减肥计划,则输出NIE,否则第一行输出承受风力的最大值(要使它最小)

 

 

样例输入

4 4
1 2 2 4
2 3 3 4
3 4 4 4
4 1 5 4

样例输出

4

提示

 

 

 

solution

题目不怎么严谨。。。

反正求一条欧拉回路,要求最大边权最小。

欧拉回路

无向图:所有点度数均为偶数且图联通。 
有向图:所有点入度等于出度且图联通。 

因为答案有单调性首先二分出mid,把大于mid的边拎出来。

这是一张混合图,我们给无向边先随便定一个向。

统计点的入度和出度,如果abs(in-out)&1  那么一定不合法。

 因为翻转一条无向边会带来+-2的收益。

我们想怎么去维护欧拉回路。

若in[i]>out[i],则lj(S,i,(in[i]-out[i])/2)

否则lj(i,T,(out[i]-in[i])/2)。

判断最大流是否等于所有(in-out)/2(in>out)即可。

 

反向边流量我赋值成t3。。真是傻

#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#define maxn 1005
#define inf 1e9
using namespace std;
int n,m,l,r,Max,tot,S,T,head[maxn];
int in[maxn],out[maxn],d[maxn],flag[maxn],cur[maxn];
queue<int>q;
struct node{
    int a,b,c,d;    
}s[2002];
struct no{
    int v,nex,cap;  
}e[200005];
void lj(int t1,int t2,int t3){
    e[++tot].v=t2,e[tot].cap=t3;e[tot].nex=head[t1];head[t1]=tot;
    e[++tot].v=t1,e[tot].cap=0;e[tot].nex=head[t2];head[t2]=tot;
}
bool BFS(){
      
    for(int i=1;i<=T;i++)d[i]=inf;
    d[S]=0;q.push(S);
    while(!q.empty()){
        int x=q.front();q.pop();
        cur[x]=head[x];
        for(int i=head[x];i;i=e[i].nex){
            if(d[e[i].v]>d[x]+1&&e[i].cap>0){
                d[e[i].v]=d[x]+1;
                if(!flag[e[i].v]){
                    flag[e[i].v]=1;q.push(e[i].v);
                }
            }
        }
        flag[x]=0;
    }
    return d[T]!=inf;
}
int lian(int k,int a){
    if(k==T||!a)return a;
    int f,flow=0;
    for(int &i=cur[k];i;i=e[i].nex){
        if(d[e[i].v]==d[k]+1&&(f=lian(e[i].v,min(e[i].cap,a)))>0){
            e[i].cap-=f;e[i^1].cap+=f;
            a-=f;flow+=f;
            if(!a)break;
        }
    }
    return flow;
}
 
bool pd(int mid)
{
    memset(in,0,sizeof(in));
    memset(out,0,sizeof(out));
    memset(head,0,sizeof(head));
    tot=1;
    for(int i=1;i<=m;++i)
    {
        if(s[i].c<=mid&&s[i].d<=mid){in[s[i].a]++,out[s[i].b]++,lj(s[i].a,s[i].b,1);continue;}
        if(s[i].c<=mid)out[s[i].a]++,in[s[i].b]++;
        else if(s[i].d<=mid)out[s[i].b]++,in[s[i].a]++;
        else return false;
    }
    S=0;T=n+1;int sum=0,ans=0;
    for(int i=1;i<=n;++i)
    {
        if((in[i]-out[i])%2)return false;
        if(in[i]>out[i])lj(S,i,(in[i]-out[i])/2),sum+=(in[i]-out[i])/2;
        else lj(i,T,(out[i]-in[i])/2);
    }
    while(BFS())ans+=lian(S,1e9);
    return ans==sum;
}
int main(){
    cin>>n>>m;
    for(int i=1;i<=m;i++){
        scanf("%d%d%d%d",&s[i].a,&s[i].b,&s[i].c,&s[i].d);
    }
    l=0,r=1005;
    while(l<r){
        int mid=(l+r)/2;
        if(pd(mid))r=mid;
        else l=mid+1;
    }
    if(r==1005)puts("NIE");
    else cout<<r<<endl;
    return 0;
}

假设定向(u,v)

那么就在网络流的图中连(v,u,1)

有流表示反向

 

posted @ 2018-08-12 16:11  liankewei123456  阅读(147)  评论(0编辑  收藏  举报