python并行多个线程和进程
python并行多个线程和进程
工作站配置了20核CPU,平时运行程序只让一个CPU进行运转,浪费了很多时间。下面介绍同时启动多个CPU运行一个程序的方法:
一个进程(CPU)包含多个线程,线程并行的python库为threading,进程并行的库为multiprocessing。
父进程(主函数)运行结束后,如果子进程(子函数)还没有运行结束,需要使用join方法让父进程等待全部结束后再结束。
下面程序中,父进程每隔30s检查子进程的存留情况,等全部子进程运行结束后通过join结束整个程序。
并行多个线程的例子
1 from threading import Thread #并行线程 2 from threading import active_count 3 from time import time, sleep 4 5 def process(times,data): 6 print("now is",times,"th process") 7 sleep(15) 8 f = open(times,"w") 9 f.write(data) 10 f.close() 11 print("OK!",times,"is finished") 12 13 if __name__ == '__main__': 14 tstart = time() 15 threads = [] 16 for i in range(5): #一个进程里并行5个线程 17 name='testdata{:02d}.txt'.format(i) 18 na ='{:6.4f}'.format(i) 19 print(name) 20 t = Thread(target=process,args=(name,na)) 21 threads.append(t) 22 t.setDaemon(True) 23 t.start() 24 sleep(2) 25 th_no = active_count() 26 while (th_no>1): #主线程监视间隔30s 27 sleep(30) 28 th_no = active_count() 29 trun = time() 30 print("now there are",th_no,"threads, time=",trun-tstart,"sec") 31 for t in threads: 32 t.join() 33 tend = time() 34 print("sum up cost",tend-tstart,"sec")
并行多个进程的例子
CPU占用较低的小程序,并行多线程效率更高,CPU占用100%的大程序,并行多个进程效率更高,并行多个线程反而会使效率降低。
1 from multiprocessing import Process #不同点1 2 from multiprocessing import active_children #不同点2 3 from time import time, sleep 4 5 def process(times,data): 6 print("now is",times,"th process") 7 sleep(15) 8 f = open(times,"w") 9 f.write(data) 10 f.close() 11 print("OK!",times,"is finished") 12 13 if __name__ == '__main__': 14 tstart = time() 15 threads = [] 16 for i in range(10): #数量要小于CPU核数 17 name='testdata{:02d}.txt'.format(i) 18 na ='{:6.4f}'.format(i) 19 print(name) 20 t = Process(target=process,args=(name,na)) #与threading.Thread使用方法相似 21 threads.append(t) 22 t.start() 23 sleep(1.0) 24 pro_no = len(active_children()) #每隔30s父进程监视子进程留存数量 25 while (pro_no>1): 26 sleep(30) 27 pro_no = len(active_children()) 28 trun = time() 29 print("Running CPU NO=",pro_no," Running time=",trun-tstart,"sec") 30 for t in threads: #等待子进程全部结束开始join 31 t.join() 32 tend = time() 33 print("sum up cost",tend-tstart,"sec")
参考官方文档:
并行多个进程 https://docs.python.org/zh-cn/3/library/multiprocessing.html
并行多个线程 https://docs.python.org/zh-cn/3/library/threading.html
本文来自博客园,作者:Philbert,转载请注明原文链接:https://www.cnblogs.com/liangxuran/p/15875934.html