使用RawComparator加速Hadoop程序
使用RawComparator加速Hadoop程序
在前面两篇文章[1][2]中我们介绍了Hadoop序列化的相关知识,包括Writable接口与Writable对象以及如何编写定制的Writable类,深入的分析了Writable类序列化之后占用的字节空间以及字节序列的构成。我们指出Hadoop序列化是Hadoop的核心部分之一,了解和分析Writable类的相关知识有助于我们理解Hadoop序列化的工作方式以及选择合适的Writable类作为MapReduce的键和值,以达到高效利用磁盘空间以及快速读写对象。因为在数据密集型计算中,在网络数据的传输是影响计算效率的一个重要因素,选择合适的Writable对象不但减小了磁盘空间,而且更重要的是其减小了需要在网络中传输的数据量,从而加快了程序的速度。
在本文中我们介绍另外一种方法加快程序的速度,这就是使用RawComparator加速Hadoop程序。我们知道作为键(Key)的Writable类必须实现WritableComparable接口,以实现对键进行排序的功能。Writable类进行比较时,Hadoop的默认方式是先将序列化后的对象字节流反序列化为对象,然后再进行比较(compareTo方法),比较过程需要一个反序列化的步骤。RawComparator的做法是不进行反序列化,而是在字节流层面进行比较,这样就省下了反序列化过程,从而加速程序的运行。Hadoop自身提供的IntWritable、LongWritabe等类已经实现了这种优化,使这些Writable类作为键进行比较时,直接使用序列化的字节数组进行比较大小,而不用进行反序列化。
RawComparator的实现
在Hadoop中编写Writable的RawComparator一般不直接继承RawComparator类,而是继承RawComparator的子类WritableComparator,因为WritableComparator类为我们提供了一些有用的工具方法,比如从字节数组中读取int、long和vlong等值。下面是上两篇文章中我们定制的MyWritable类的RawComparator实现,定制的MyWritable由两个VLongWritable对组成,为了添加RawComparator功能,Writable类必须实现WritableComparable接口,这里不再展示实现了WritableComparable接口的MyWritableComparable类的全部内容,而只是MyWritableComparable类中Comparator的实现,完整的代码可以在github中找到。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
|
|