CF641E 题解
前言
非常套路的 cdq 分治。
思路
把所有操作统一存下来。将 \(x\) 离散化。
\(i\) 能被 \(j\) 统计,前提是 \(a_i\) 的操作时间早于 \(a_j\)。
然后分操作即可。具体参照代码。
完整代码
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
const int N = 1e5 + 5;
struct Data {int op, time, val, id;} a[N], t[N];
int cnt[N], ans[N];
void MergeSort(int l, int r)
{
if (l >= r) return;
int mid = (l + r) >> 1;
MergeSort(l, mid), MergeSort(mid + 1, r);
int i = l, j = mid + 1, cur = 0;
while (i <= mid && j <= r)
if (a[i].time <= a[j].time)
{
if (a[i].op == 1) cnt[a[i].val]++;
if (a[i].op == 2) cnt[a[i].val]--;
t[++cur] = a[i], i++;
}
else
{
if (a[j].op == 3) ans[a[j].id] += cnt[a[j].val];
t[++cur] = a[j], j++;
}
while (i <= mid)
{
if (a[i].op == 1) cnt[a[i].val]++;
if (a[i].op == 2) cnt[a[i].val]--;
t[++cur] = a[i], i++;
}
while (j <= r)
{
if (a[j].op == 3) ans[a[j].id] += cnt[a[j].val];
t[++cur] = a[j], j++;
}
for (int i = l; i <= mid; i++) cnt[a[i].val] = 0;
for (int i = l, j = 1; j <= cur; i++, j++) a[i] = t[j];
}
int unq[N]; //离散化
int main()
{
int n, q = 0;
scanf("%d", &n);
for (int i = 1; i <= n; i++)
{
scanf("%d%d%d", &a[i].op, &a[i].time, &a[i].val);
unq[i] = a[i].val, a[i].id = (a[i].op == 3 ? ++q : 0);
}
sort(unq + 1, unq + n + 1); //离散化ing
int m = unique(unq + 1, unq + n + 1) - unq + 1;
for (int i = 1; i <= n; i++) a[i].val = lower_bound(unq + 1, unq + m + 1, a[i].val) - unq;
MergeSort(1, n);
for (int i = 1; i <= q; i++) printf("%d\n", ans[i]);
return 0;
}
希望能帮助到大家!