CAP

CAP

CAP定理,又被叫作布鲁尔定理。对于设计分布式系统来说(不仅仅是分布式事务)的架构师来说,CAP就是你的入门理论。

  • C (一致性):对某个指定的客户端来说,读操作能返回最新的写操作。对于数据分布在不同节点上的数据上来说,如果在某个节点更新了数据,那么在其他节点如果都能读取到这个最新的数据,那么就称为强一致,如果有某个节点没有读取到,那就是分布式不一致。
  • A (可用性):非故障的节点在合理的时间内返回合理的响应(不是错误和超时的响应)。可用性的两个关键一个是合理的时间,一个是合理的响应。合理的时间指的是请求不能无限被阻塞,应该在合理的时间给出返回。合理的响应指的是系统应该明确返回结果并且结果是正确的,这里的正确指的是比如应该返回50,而不是返回40。
  • P (分区容错性):当出现网络分区后,系统能够继续工作。打个比方,这里个集群有多台机器,有台机器网络出现了问题,但是这个集群仍然可以正常工作。

熟悉CAP的人都知道,三者不能共有,如果感兴趣可以搜索CAP的证明,在分布式系统中,网络无法100%可靠,分区其实是一个必然现象,如果我们选择了CA而放弃了P,那么当发生分区现象时,为了保证一致性,这个时候必须拒绝请求,但是A又不允许,所以分布式系统理论上不可能选择CA架构,只能选择CP或者AP架构。

对于CP来说,放弃可用性,追求一致性和分区容错性,我们的zookeeper其实就是追求的强一致。

对于AP来说,放弃一致性(这里说的一致性是强一致性),追求分区容错性和可用性,这是很多分布式系统设计时的选择,后面的BASE也是根据AP来扩展。

顺便一提,CAP理论中是忽略网络延迟,也就是当事务提交时,从节点A复制到节点B,但是在现实中这个是明显不可能的,所以总会有一定的时间是不一致。同时CAP中选择两个,比如你选择了CP,并不是叫你放弃A。因为P出现的概率实在是太小了,大部分的时间你仍然需要保证CA。就算分区出现了你也要为后来的A做准备,比如通过一些日志的手段,是其他机器回复至可用。

BASE

BASE 是 Basically Available(基本可用)、Soft state(软状态)和 Eventually consistent (最终一致性)三个短语的缩写。是对CAP中AP的一个扩展

  1. 基本可用:分布式系统在出现故障时,允许损失部分可用功能,保证核心功能可用。
  2. 软状态:允许系统中存在中间状态,这个状态不影响系统可用性,这里指的是CAP中的不一致。
  3. 最终一致:最终一致是指经过一段时间后,所有节点数据都将会达到一致。

BASE解决了CAP中理论没有网络延迟,在BASE中用软状态和最终一致,保证了延迟后的一致性。BASE和 ACID 是相反的,它完全不同于ACID的强一致性模型,而是通过牺牲强一致性来获得可用性,并允许数据在一段时间内是不一致的,但最终达到一致状态。


作者:咖啡拿铁
链接:https://juejin.im/post/6844903647197806605
来源:掘金
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

posted on 2020-08-09 15:37  lialin  阅读(189)  评论(0编辑  收藏  举报

导航