R可视化lend_club 全球最大的P2P平台数据75W条
lend_club 全球最大的P2P平台2007~2012年贷款数据百度云下载。
此文章基于R语言做简单分析。
rm(list=ls()) #清除变量
gc() #释放内存
- step1
考虑到后续分析
将数据导入sqlserver,用到SSIS
如图
**此处有坑
- step2
连接sqlserver,并将数据读入R。
library(RODBC)
con<-odbcConnect("LI") # LI 是本地数据库,con~connect 是本地连接
RODBC Connection 2
Details:
case=nochange
DSN=LI
UID=
Trusted_Connection=Yes
APP=RStudio
WSID=LIYI-PC
lend_club1<-sqlQuery(con,"SELECT sum([Amount Requested]) as sumamount
,[Application Date] as date_1
,[year]
,substring(convert(varchar(12),[Application Date],111),6,5) as month_day
FROM [liyi_test].[dbo].[lend_club]
group by [year],substring(convert(varchar(12),[Application Date],111),6,5),[Application Date]
order by [year],[month_day]")
head(lend_club1)
sumamount date_1 year month_day
1 2000 2007-05-26 2007 05/26
2 47400 2007-05-27 2007 05/27
3 23900 2007-05-28 2007 05/28
4 121050 2007-05-29 2007 05/29
5 87500 2007-05-30 2007 05/30
6 46500 2007-05-31 2007 05/31
- step3
library(ggplot2)
qplot(date_1,sumamount,data=lend_club1,geom="line") # 每天贷款金额的时序图
p<-qplot(month_day,sumamount,data=lend_club1)
p+facet_wrap(~year) #2007-2012 期间每日的贷款金额
library(tidyr)
library(dplyr)
lend_club2<-separate(lend_club1,date_1,c("y","m","d"),sep="-")
head(lend_club2)
sumamount y m d year month_day
1 2000 2007 05 26 2007 05/26
2 47400 2007 05 27 2007 05/27
3 23900 2007 05 28 2007 05/28
4 121050 2007 05 29 2007 05/29
5 87500 2007 05 30 2007 05/30
6 46500 2007 05 31 2007 05/31
lend_club3<-unite(lend_club2,"y_m",y,m,sep="-",remove = F)
head(lend_club3)
sumamount y_m y m d year month_day
1 2000 2007-05 2007 05 26 2007 05/26
2 47400 2007-05 2007 05 27 2007 05/27
3 23900 2007-05 2007 05 28 2007 05/28
4 121050 2007-05 2007 05 29 2007 05/29
5 87500 2007-05 2007 05 30 2007 05/30
6 46500 2007-05 2007 05 31 2007 05/31
qplot(m,sumamount,data=lend_club3,geom=c("boxplot")+facet_wrap(~year) #2007~2012年每月贷款金额的箱线图
lend_club4<- lend_club3%>%
group_by(m,y)%>%
summarise(total_m=sum(sumamount))
lend_club4
head(lend_club4)
Source: local data frame [6 x 3]
Groups: m [2]
m y total_m
(chr) (chr) (dbl)
1 01 2008 32256329
2 01 2009 28523635
3 01 2010 63082946
4 01 2011 171186425
5 01 2012 297667575
6 02 2008 20596688
折线图 分面
p<-qplot(m,total_m,data=lend_club4)+geom_smooth(aes(group=y,colour=y),method = "lm")
折线图 分面
p<-qplot(m,total_m,data=lend_club4)+geom_smooth(aes(group=y,colour=y))
p+facet_wrap(~y)
lend<-read.csv("C:\\Users\\liyi\\Desktop\\lend_club.csv")
lend1<-read.csv("C:\\Users\\liyi\\Desktop\\lend_club.csv",header = F)
lend1<-lend1[-1,]
head(lend1)
lend1<-lend1[,c(1,3,9)]
myvar<-c("amount","year","employment")
names(lend1)<-myvar
head(lend1)
str(lend1)
lend1$amountnew<-as.numeric(as.character(lend1$amount))
library(sqldf)
lend2<-sqldf('select sum(V1),V3,V9
from lend1
group by V3,V9')
q<-qplot(employment,amountnew,data = lend1,geom=c("boxplot"),colour=lend1$employment)+facet_wrap(~year)
q<- q+theme(axis.text.x=element_text(angle=90,hjust=1,colour="black"),legend.position='none')
q<- q+scale_y_continuous(limits = c(0, 100000))
q
```
专注数据分析
欢迎转载并注明出处
```