golang 使用pprof和go-torch做性能分析

    软件开发过程中,项目上线并不是终点。上线后,还要对程序的取样分析运行情况,并重构现有的功能,让程序执行更高效更稳写。 golang的工具包内自带pprof功能,使找出程序中占内存和CPU较多的部分功能方便了不少。加上uber的火焰图,可视化显示,让我们在分析程序时更简单明了。

    pprof有两个包用来分析程序一个是net/http/pprof另一个是runtime/pprof,net/http/pprof只是对runtime/pprof包进行封装并用http暴露出来,如下图源码所示:

    

 

    使用net/http/pprof分析web服务

    pprof分析web项目,非常的简单只需要导入包即可。
    

_ "net/http/pprof"

    编写一个小的web服务器

package main

import (
    _  "net/http/pprof"
    "net/http"
    "time"
    "math/rand"
    "fmt"
)

var Count int64 = 0
func main() {
    go calCount()

    http.HandleFunc("/test", test)
    http.HandleFunc("/data", handlerData)

    err := http.ListenAndServe(":9909", nil )
    if err != nil {
        panic(err)
    }
}

func handlerData(w http.ResponseWriter, r *http.Request) {
    qUrl := r.URL
    fmt.Println(qUrl)
    fibRev := Fib()
    var fib uint64
    for i:= 0; i < 5000; i++ {
        fib = fibRev()
        fmt.Println("fib = ", fib)
    }
    str := RandomStr(RandomInt(100, 500))
    str =  fmt.Sprintf("Fib = %d; String = %s", fib, str)
    w.Write([]byte(str))
}

func test(w http.ResponseWriter, r *http.Request) {
    fibRev := Fib()
    var fib uint64
    index := Count
    arr := make([]uint64, index)
    var i int64
    for ; i < index; i++ {
        fib = fibRev()
        arr[i] = fib
        fmt.Println("fib = ", fib)
    }
    time.Sleep(time.Millisecond * 500)
    str :=  fmt.Sprintf("Fib = %v", arr)
    w.Write([]byte(str))
}

func Fib() func() uint64 {
    var x, y uint64 = 0, 1
    return func() uint64 {
        x, y = y, x + y
        return x
    }
}

var letterRunes = []rune("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890")
func RandomStr(num int) string {
    seed := time.Now().UnixNano()
    if seed <= 0 {
        seed = time.Now().UnixNano()
    }
    rand.Seed(seed)
    b := make([]rune, num)
    for i := range b {
        b[i] = letterRunes[rand.Intn(len(letterRunes))]
    }
    return string(b)
}

func RandomInt(min, max int) int {
    rand.Seed(time.Now().UnixNano())
    return rand.Intn(max - min + 1) + min
}

func calCount() {
    timeInterval := time.Tick(time.Second)

    for {
        select {
        case i := <- timeInterval:
            Count = int64(i.Second())
        }
    }
}

    

    web服务监听9909端口

    web服务器有两个http方法
    test: 根据当前的秒数做斐波那契计算
    data: 做一个5000的斐波那契计算并返回一个随机的字符串

    运行程序,通过访问  http://192.168.3.34:9909/debug/pprof/可以查看web版的profiles相关信息

   

    这几个路径表示的是

    /debug/pprof/profile:访问这个链接会自动进行 CPU profiling,持续 30s,并生成一个文件供下载

    /debug/pprof/block:Goroutine阻塞事件的记录。默认每发生一次阻塞事件时取样一次。

    /debug/pprof/goroutines:活跃Goroutine的信息的记录。仅在获取时取样一次。

    /debug/pprof/heap: 堆内存分配情况的记录。默认每分配512K字节时取样一次。

    /debug/pprof/mutex: 查看争用互斥锁的持有者。

    /debug/pprof/threadcreate: 系统线程创建情况的记录。 仅在获取时取样一次。

 

    除了这些golang为我提供了更多方便的方法,用于分析,下面我们来用命令去访问详细的信息

    我们用wrk来访问我们的两个方法,这样我们的服务会处在高速运行状态,取样的结果会更准确

wrk -c 20 -t 5 -d 3m http://192.168.3.34:9909/data
wrk -c 20 -t 5 -d 3m http://192.168.3.34:9909/test

    

    分析CPU使用情况 

    使用命令分析CPU使用情况

go tool pprof httpdemo http://192.168.3.34:9909/debug/pprof/profile

    在默认情况下,Go语言的运行时系统会以100 Hz的的频率对CPU使用情况进行取样。也就是说每秒取样100次,即每10毫秒会取样一次。为什么使用这个频率呢?因为100 Hz既足够产生有用的数据,又不至于让系统产生停顿。并且100这个数上也很容易做换算,比如把总取样计数换算为每秒的取样数。实际上,这里所说的对CPU使用情况的取样就是对当前的Goroutine的堆栈上的程序计数器的取样。

     默认的取样时间是30s 你可以通过-seconds 命令来指定取样时间 。取样完成后会进入命令行状态:

    可以输入help查看相关的命令.这里说几个常用的命令

    top命令,输入top命令默认是返加前10的占用cpu的方法。当然人可以在命令后面加数字指定top数

 

     list命令根据你的正则输出相关的方法.直接跟可选项o 会输出所有的方法。也可以指定方法名

    如: handlerData方法占cpu的74.81%

    web命令:以网页的形式展现:更直观的显示cpu的使用情况

    

 

 分析内存使用情况

      和分析cpu差不多使用命令

go tool pprof httpdemo http://192.168.3.34:9909/debug/pprof/heap

      默认情况下取样时只取当前内存使用情况,可以加可选命令alloc_objects,将从程序开始时的内存取样

go tool pprof -alloc_objects httpdemo http://192.168.3.34:9909/debug/pprof/heap

     和cpu的命令一样,top list web。不同的是这里显示的是内存使用情况而已。这里我就不演示了。

 

    

 安装go-torch

    还有更方便的工具就是uber的 go-torch了   

    安装很简单

go get github.com/uber/go-torch
cd $GOPATH/src/github.com/uber/go-torch
git clone https://github.com/brendangregg/FlameGraph.git

    然后运行FlameGraph下的 拷贝 flamegraph.pl 到 /usr/local/bin

    火焰图分析CPU

     使用命令

go-torch -u http://192.168.3.34:9909  --seconds 60 -f cpu.svg

     会在当前目录下生成cpu.svg文件,使用浏览器打开

     

     更直观的看到应用程序的问题。handlerData方法占用的cpu时间过长。然后就是去代码里分析并优化了。

 

 火焰图分析内存

    使用命令

go-torch  http://192.168.3.34:9909/debug/pprof/heap --colors mem  -f mem.svg

会在当前目录下生成cpu.svg文件,使用浏览器打开

 

 

 使用runtime/pprof分析项目

     如果你的项目不是web服务,比如是rpc服务等,就要使用runtime/pprof。他提供了很多方法,有时间可以看一下源码

    我写了一个简单的工具类。用于调用分析

package profapp

import (
    "os"
    "rrnc_im/lib/zaplogger"
    "go.uber.org/zap"
    "runtime/pprof"
    "runtime"
)

func StartCpuProf() {
    f, err := os.Create("cpu.prof")
    if err != nil {
        zaplogger.Error("create cpu profile file error: ", zap.Error(err))
        return
    }
    if err := pprof.StartCPUProfile(f); err != nil {
        zaplogger.Error("can not start cpu profile,  error: ", zap.Error(err))
        f.Close()
    }
}

func StopCpuProf() {
    pprof.StopCPUProfile()
}


//--------Mem
func ProfGc() {
    runtime.GC() // get up-to-date statistics
}

func SaveMemProf() {
    f, err := os.Create("mem.prof")
    if err != nil {
        zaplogger.Error("create mem profile file error: ", zap.Error(err))
        return
    }

    if err := pprof.WriteHeapProfile(f); err != nil {
        zaplogger.Error("could not write memory profile: ", zap.Error(err))
    }
    f.Close()
}

// goroutine block
func SaveBlockProfile() {
    f, err := os.Create("block.prof")
    if err != nil {
        zaplogger.Error("create mem profile file error: ", zap.Error(err))
        return
    }

    if err := pprof.Lookup("block").WriteTo(f, 0); err != nil {
        zaplogger.Error("could not write block profile: ", zap.Error(err))
    }
    f.Close()
}

  在需要分析的方法内调用这些方法就可以 比如我是用rpc开放了几个方法

 

type TestProf struct {

}

func (*TestProf) StartCpuProAct(context.Context, *im_test.TestRequest, *im_test.TestRequest) error {
    profapp.StartCpuProf()
    return nil
}

func (*TestProf) StopCpuProfAct(context.Context, *im_test.TestRequest, *im_test.TestRequest) error {
    profapp.StopCpuProf()
    return nil
}


func (*TestProf) ProfGcAct(context.Context, *im_test.TestRequest, *im_test.TestRequest) error {
    profapp.ProfGc()
    return nil
}

func (*TestProf) SaveMemAct(context.Context, *im_test.TestRequest, *im_test.TestRequest) error {
    profapp.SaveMemProf()
    return nil
}

func (*TestProf) SaveBlockProfileAct(context.Context, *im_test.TestRequest, *im_test.TestRequest) error {
    profapp.SaveBlockProfile()
    return nil
}

调用

profTest.StartCpuProAct(context.TODO(), &im_test.TestRequest{})

    time.Sleep(time.Second * 30)
    profTest.StopCpuProfAct(context.TODO(), &im_test.TestRequest{})

    profTest.SaveMemAct(context.TODO(), &im_test.TestRequest{})
    profTest.SaveBlockProfileAct(context.TODO(), &im_test.TestRequest{})

 

    思想是一样的,会在当前文件夹内导出profile文件。然后用火焰图去分析,就不能指定域名了,要指定文件

 go-torch  httpdemo cpu.prof 
 go-torch  httpdemo mem.prof

 

posted @ 2018-07-30 18:01  li-peng  阅读(22518)  评论(1编辑  收藏  举报