Given an array nums containing n + 1 integers where each integer is between 1 and n (inclusive), prove that at least one duplicate number must exist. Assume that there is only one duplicate number, find the duplicate one.
Note:
- You must not modify the array (assume the array is read only).
- You must use only constant, O(1) extra space.
- Your runtime complexity should be less than
O(n2)
. - There is only one duplicate number in the array, but it could be repeated more than once.
==============================
题目:如果把这个数组看做是链表,数组中元素值当做链表节点中next指针,
我们可以发现这道题就是在求 链表中环的 开始节点
有关环的开始节点证明,可以看这里: [http://www.cnblogs.com/li-daphne/p/5551048.html]
=========
思路:利用fast/slow方法(slow的步长为1,fast的步长为2),找到"链表"相遇的地方,
这时候fast指向"链表"的开始位置,slow接着遍历(fast和slow的步长都为一).
当fast/slow再次相遇的地方,就是"链表环"的入口,即数组中 重复元素.
===========
代码:
class Solution { public: int findDuplicate(vector<int>& nums) { if(nums.size()>1){ int fast = nums[nums[0]]; int slow = nums[0]; while(slow!=fast){ slow = nums[slow]; fast = nums[nums[fast]]; } fast = 0; while(fast != slow){ fast = nums[fast]; slow = nums[slow]; } return slow; } return -1; } };