rsa
rsa
下载txt文件知道
- N = 460657813884289609896372056585544172485318117026246263899744329237492701820627219556007788200590119136173895989001382151536006853823326382892363143604314518686388786002989248800814861248595075326277099645338694977097459168530898776007293695728101976069423971696524237755227187061418202849911479124793990722597
- e = 354611102441307572056572181827925899198345350228753730931089393275463916544456626894245415096107834465778409532373187125318554614722599301791528916212839368121066035541008808261534500586023652767712271625785204280964688004680328300124849680477105302519377370092578107827116821391826210972320377614967547827619
- c = 38230991316229399651823567590692301060044620412191737764632384680546256228451518238842965221394711848337832459443844446889468362154188214840736744657885858943810177675871991111466653158257191139605699916347308294995664530280816850482740530602254559123759121106338359220242637775919026933563326069449424391192
观察看出e特别大,所以考虑低解密指数攻击,上脚本
import gmpy2
import binascii
def transform(x, y): # 使用辗转相处将分数 x/y 转为连分数的形式
res = []
while y:
res.append(x // y)
x, y = y, x % y
return res
def continued_fraction(sub_res):
numerator, denominator = 1, 0
for i in sub_res[::-1]: # 从sublist的后面往前循环
denominator, numerator = numerator, i * numerator + denominator
return denominator, numerator # 得到渐进分数的分母和分子,并返回
# 求解每个渐进分数
def sub_fraction(x, y):
res = transform(x, y)
res = list(map(continued_fraction, (res[0:i] for i in range(1, len(res))))) # 将连分数的结果逐一截取以求渐进分数
return res
def get_pq(a, b, c): # 由p+q和pq的值通过维达定理来求解p和q
par = gmpy2.isqrt(b * b - 4 * a * c) # 由上述可得,开根号一定是整数,因为有解
x1, x2 = (-b + par) // (2 * a), (-b - par) // (2 * a)
return x1, x2
def wienerAttack(e, n):
for (d, k) in sub_fraction(e, n): # 用一个for循环来注意试探e/n的连续函数的渐进分数,直到找到一个满足条件的渐进分数
if k == 0: # 可能会出现连分数的第一个为0的情况,排除
continue
if (e * d - 1) % k != 0: # ed=1 (mod φ(n)) 因此如果找到了d的话,(ed-1)会整除φ(n),也就是存在k使得(e*d-1)//k=φ(n)
continue
phi = (e * d - 1) // k # 这个结果就是 φ(n)
px, qy = get_pq(1, n - phi + 1, n)
if px * qy == n:
p, q = abs(int(px)), abs(int(qy)) # 可能会得到两个负数,负负得正未尝不会出现
d = gmpy2.invert(e, (p - 1) * (q - 1)) # 求ed=1 (mod φ(n))的结果,也就是e关于 φ(n)的乘法逆元d
return d
print("该方法不适用")
n = 460657813884289609896372056585544172485318117026246263899744329237492701820627219556007788200590119136173895989001382151536006853823326382892363143604314518686388786002989248800814861248595075326277099645338694977097459168530898776007293695728101976069423971696524237755227187061418202849911479124793990722597
e = 354611102441307572056572181827925899198345350228753730931089393275463916544456626894245415096107834465778409532373187125318554614722599301791528916212839368121066035541008808261534500586023652767712271625785204280964688004680328300124849680477105302519377370092578107827116821391826210972320377614967547827619
c = 38230991316229399651823567590692301060044620412191737764632384680546256228451518238842965221394711848337832459443844446889468362154188214840736744657885858943810177675871991111466653158257191139605699916347308294995664530280816850482740530602254559123759121106338359220242637775919026933563326069449424391192
d = wienerAttack(e, n)
print("d=", d)
m = gmpy2.powmod(c,d,n)
print(binascii.unhexlify(hex(m)[2:]))
#d= #8264667972294275017293339772371783322168822149471976834221082393409363691895
#b'flag{Wien3r_4tt@ck_1s_3AsY}'
得到flag。Bingo!