二项式反演

先证明一个等式:

\[\large \binom{n}{i}\binom{i}{j} = \binom{n}{j}\binom{n-j}{i-j} \]

左边的组合意义是从 \(n\) 里选 \(i\),再从 \(i\) 里选 \(j\),右边是先选出 \(j\),再选出 \(i\)

形式一

\[\large f(n)=\sum_{i=0}^n(-1)^i \binom{n}{i} g(i) \Leftrightarrow g(n)=\sum_{i=0}^n(-1)^i \binom{n}{i} f(i) \\ \large\begin{aligned} &\sum_{i=0}^n(-1)^i \binom{n}{i} f(i) \\ =&\sum_{i=0}^n(-1)^i \binom{n}{i}\sum_{j=0}^i(-1)^j\binom{i}{j}g(j) \\ =&\sum_{j=0}^n g(j)\sum_{i=j}^n (-1)^{i+j} \binom{n}{i}\binom{i}{j} \\ =&\sum_{j=0}^n g(j)\sum_{i=j}^n (-1)^{i-j} \binom{n}{j}\binom{n-j}{i-j} \\ =&\sum_{j=0}^n g(j)\binom{n}{j}\sum_{i=0}^{n-j} (-1)^i \binom{n-j}{i} \\ =&\sum_{j=0}^n g(j)\binom{n}{j}(1-1)^{n-j} \\ =&\sum_{j=0}^n g(j)\binom{n}{j}[n=j] \\ =&g(n) \end{aligned} \]

形式二

\[\large f(n)=\sum_{i=0}^n\binom{n}{i} g(i) \Leftrightarrow g(n)=\sum_{i=0}^n(-1)^{n-i} \binom{n}{i} f(i) \\ \large\begin{aligned} &\sum_{i=0}^n(-1)^{n-i} \binom{n}{i} f(i) \\ =&\sum_{i=0}^n(-1)^{n-i} \binom{n}{i}\sum_{j=0}^i\binom{i}{j}g(j) \\ =&\sum_{j=0}^n g(j)\sum_{i=j}^n (-1)^{n-i} \binom{n}{i}\binom{i}{j} \\ =&\sum_{j=0}^n g(j)\sum_{i=j}^n (-1)^{n-i}\binom{n}{j}\binom{n-j}{n-i} \\ =&\sum_{j=0}^n g(j)\binom{n}{j}\sum_{i=0}^{n-j} (-1)^{i} \binom{n-j}{i} \\ =&\sum_{j=0}^n g(j)\binom{n}{j}(1-1)^{n-j} \\ =&\sum_{j=0}^n g(j)\binom{n}{j}[n=j] \\ =&g(n) \\ \end{aligned} \]

其他

之前两个形式都是下三角,同样也有上三角的形式:

\[\large\begin{aligned} f(m)=\sum_{i=m}^n(-1)^i \binom{i}{m} g(i) &\Leftrightarrow g(m)=\sum_{i=m}^n(-1)^i \binom{i}{m} f(i) \\ f(m)=\sum_{i=m}^n\binom{i}{m} g(i) &\Leftrightarrow g(m)=\sum_{i=m}^n(-1)^{i-m} \binom{i}{m} f(i) \end{aligned} \]

应用

错位排列

\(f(i)\) 为恰好有 \(i\) 位错排的方案数,得:

\[\large n!=\sum_{i=0}^n \binom{n}{i}f(n-i)=\sum_{i=0}^n \binom{n}{n-i}f(i)=\sum_{i=0}^n \binom{n}{i}f(i) \]

二项式反演得:

\[\large\begin{aligned} f(n)&=\sum_{i=0}^n(-1)^{n-i}\binom{n}{i}i! \\ &=n!\sum_{i=0}^n\frac{(-1)^{n-i}}{(n-i)!} \\ &=n!\sum_{i=0}^n\frac{(-1)^i}{i!} \end{aligned} \]

至多好算用 \(f(n)=\sum\limits_{i=0}^n\binom{n}{i} g(i) \Leftrightarrow g(n)=\sum\limits_{i=0}^n(-1)^{n-i} \binom{n}{i} f(i)\)

至少好算用 \(f(m)=\sum\limits_{i=m}^n\binom{i}{m} g(i) \Leftrightarrow g(m)=\sum\limits_{i=m}^n(-1)^{i-m} \binom{i}{m} f(i)\)

已经没有什么好害怕的了[JSOI2011]分特产[SDOI2013]泉

posted @ 2020-03-22 23:10  lhm_liu  阅读(218)  评论(0编辑  收藏  举报