'MMDetection3D'+'waymo-open-dataset-tf-2-6-0'+'pytorc2.3.1+cu121'安装
1.'MMDetection3D'+'waymo-open-dataset-tf-2-6-0'+'pytorc2.3.1+cu121'安装
安装pytorc2.3.1+cu121
步骤 1. 创建并激活一个 conda 环境
conda create -n mmd python=3.8 -y
conda activate mmd
步骤 2. 基于PyTorch 官方说明安装 PyTorch,例如:
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
步骤 3. 验证PyTorch安装
[GCC 11.2.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> torch.cuda.is_available()
True
安装waymo-open-dataset-tf-2-6-0
步骤 1. 安装waymo-API
pip install waymo-open-dataset-tf-2-6-0
步骤 2. 处理torch版本冲突
出现如下报错
ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
torch 2.3.1+cu121 requires typing-extensions>=4.8.0, but you have typing-extensions 3.7.4.3 which is incompatible.
更新typing-extensions
pip install typing-extensions==4.8.0
步骤 3. 处理tensorflow-2.6.0与protobuf的版本冲突
pip install protobuf==3.20.0
步骤 4. 安装tensorflow-gpu所需cudatoolkit与cudnn
conda install cudatoolkit=11.3.1 cudnn=8.2.1
步骤 5. 验证torch与tensorflow安装
Python 3.8.19 (default, Mar 20 2024, 19:58:24)
[GCC 11.2.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> import tensorflow as tf
>>> torch.cuda.is_available()
True
>>> tf.test.is_gpu_available()
WARNING:tensorflow:From <stdin>:1: is_gpu_available (from tensorflow.python.framework.test_util) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.config.list_physical_devices('GPU')` instead.
2024-06-24 10:36:35.105410: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2024-06-24 10:36:35.106672: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2024-06-24 10:36:35.114045: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2024-06-24 10:36:35.114108: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2024-06-24 10:36:35.165378: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2024-06-24 10:36:35.165449: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2024-06-24 10:36:35.165495: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2024-06-24 10:36:35.165545: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1510] Created device /device:GPU:0 with 20170 MB memory: -> device: 0, name: NVIDIA GeForce RTX 4090, pci bus id: 0000:01:00.0, compute capability: 8.9
True
安装MMDetection3D
步骤 1. 使用 MIM 安装 MMEngine,MMCV 和 MMDetection
pip install -U openmim
mim install mmengine
mim install 'mmcv>=2.0.0rc4'
mim install 'mmdet>=3.0.0'
步骤 2. 处理openmim与tensorflow的版本冲突
ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
tensorflow 2.6.0 requires numpy~=1.19.2, but you have numpy 1.24.4 which is incompatible.
tensorflow 2.6.0 requires typing-extensions~=3.7.4, but you have typing-extensions 4.8.0 which is incompatible.
参考issues#2858安装numpy==1.23.0
pip install numpy==1.23.0
步骤 2. 安装 MMDetection3D
下载源码备用
git clone https://github.com/open-mmlab/mmdetection3d.git -b dev-1.x
# "-b dev-1.x" 表示切换到 `dev-1.x` 分支。
cd mmdetection3d
将 mmdet3d 作为依赖或第三方 Python 包使用,使用 MIM 安装
mim install "mmdet3d>=1.1.0rc0"
验证安装
步骤 1. 验证mmdet3d
mim download mmdet3d --config pointpillars_hv_secfpn_8xb6-160e_kitti-3d-car --dest .
python demo/pcd_demo.py demo/data/kitti/000008.bin pointpillars_hv_secfpn_8xb6-160e_kitti-3d-car.py hv_pointpillars_secfpn_6x8_160e_kitti-3d-car_20220331_134606-d42d15ed.pth --show
步骤 2. 验证pytorch与tensorflow
Python 3.8.19 (default, Mar 20 2024, 19:58:24)
[GCC 11.2.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> import tensorflow as tf
>>> torch.cuda.is_available()
True
>>> tf.test.is_gpu_available()
WARNING:tensorflow:From <stdin>:1: is_gpu_available (from tensorflow.python.framework.test_util) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.config.list_physical_devices('GPU')` instead.
2024-06-24 10:47:24.233284: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2024-06-24 10:47:24.234634: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2024-06-24 10:47:24.237583: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2024-06-24 10:47:24.237644: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2024-06-24 10:47:24.267267: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2024-06-24 10:47:24.267336: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2024-06-24 10:47:24.267382: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2024-06-24 10:47:24.267431: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1510] Created device /device:GPU:0 with 19665 MB memory: -> device: 0, name: NVIDIA GeForce RTX 4090, pci bus id: 0000:01:00.0, compute capability: 8.9
True
>>>
pip list
Package Version Editable project location
--------------------------- ------------- -------------------------
absl-py 0.15.0
addict 2.4.0
aliyun-python-sdk-core 2.15.1
aliyun-python-sdk-kms 2.16.3
asttokens 2.4.1
astunparse 1.6.3
attrs 23.2.0
backcall 0.2.0
black 24.4.2
blinker 1.8.2
cachetools 5.3.3
certifi 2024.6.2
cffi 1.16.0
charset-normalizer 3.3.2
clang 5.0
click 8.1.7
colorama 0.4.6
comm 0.2.2
ConfigArgParse 1.7
contourpy 1.1.1
crcmod 1.7
cryptography 42.0.8
cycler 0.12.1
dash 2.17.1
dash-core-components 2.0.0
dash-html-components 2.0.0
dash-table 5.0.0
decorator 5.1.1
descartes 1.1.0
easydict 1.13
exceptiongroup 1.2.1
executing 2.0.1
fastjsonschema 2.20.0
filelock 3.14.0
fire 0.6.0
flake8 7.1.0
Flask 3.0.3
flatbuffers 1.12
fonttools 4.53.0
fsspec 2024.2.0
gast 0.4.0
google-auth 2.30.0
google-auth-oauthlib 1.0.0
google-pasta 0.2.0
grpcio 1.64.1
h5py 3.1.0
idna 3.7
imageio 2.34.1
importlib_metadata 7.2.1
importlib_resources 6.4.0
iniconfig 2.0.0
ipython 8.12.3
ipywidgets 8.1.3
itsdangerous 2.2.0
jedi 0.19.1
Jinja2 3.1.3
jmespath 0.10.0
joblib 1.4.2
jsonschema 4.22.0
jsonschema-specifications 2023.12.1
jupyter_core 5.7.2
jupyterlab_widgets 3.0.11
keras 2.15.0
Keras-Preprocessing 1.1.2
kiwisolver 1.4.5
llvmlite 0.41.1
lyft-dataset-sdk 0.0.8
Markdown 3.6
markdown-it-py 3.0.0
MarkupSafe 2.1.5
matplotlib 3.5.3
matplotlib-inline 0.1.7
mccabe 0.7.0
mdurl 0.1.2
mmcv 2.1.0
mmdet 3.2.0
mmdet3d 1.4.0
mmengine 0.10.4
model-index 0.1.11
MotionTransformer 0.1.0+a5ba7bd /home/lhc/codes/pbp/MTR
mpmath 1.3.0
mypy-extensions 1.0.0
nbformat 5.10.4
nest-asyncio 1.6.0
networkx 3.0
numba 0.58.1
numpy 1.23.0
nuscenes-devkit 1.1.11
nvidia-cublas-cu12 12.1.3.1
nvidia-cuda-cupti-cu12 12.1.105
nvidia-cuda-nvrtc-cu12 12.1.105
nvidia-cuda-runtime-cu12 12.1.105
nvidia-cudnn-cu12 8.9.2.26
nvidia-cufft-cu12 11.0.2.54
nvidia-curand-cu12 10.3.2.106
nvidia-cusolver-cu12 11.4.5.107
nvidia-cusparse-cu12 12.1.0.106
nvidia-nccl-cu12 2.20.5
nvidia-nvjitlink-cu12 12.1.105
nvidia-nvtx-cu12 12.1.105
oauthlib 3.2.2
open3d 0.18.0
opencv-python 4.10.0.84
opendatalab 0.0.10
openmim 0.3.9
openxlab 0.1.0
opt-einsum 3.3.0
ordered-set 4.1.0
oss2 2.17.0
packaging 24.1
pandas 2.0.3
parso 0.8.4
pathspec 0.12.1
pexpect 4.9.0
pickleshare 0.7.5
pillow 10.2.0
pip 24.0
pkgutil_resolve_name 1.3.10
platformdirs 4.2.2
plotly 5.22.0
pluggy 1.5.0
plyfile 1.0.3
prompt_toolkit 3.0.47
protobuf 3.20.0
ptyprocess 0.7.0
pure-eval 0.2.2
pyasn1 0.6.0
pyasn1_modules 0.4.0
pycocotools 2.0.7
pycodestyle 2.12.0
pycparser 2.22
pycryptodome 3.20.0
pyflakes 3.2.0
Pygments 2.18.0
pyparsing 3.1.2
pyquaternion 0.9.9
pytest 8.2.2
python-dateutil 2.9.0.post0
pytz 2023.4
PyWavelets 1.4.1
PyYAML 6.0.1
referencing 0.35.1
requests 2.28.2
requests-oauthlib 2.0.0
retrying 1.3.4
rich 13.4.2
rpds-py 0.18.1
rsa 4.9
scikit-image 0.19.3
scikit-learn 1.3.2
scipy 1.10.1
setuptools 60.2.0
Shapely 1.8.5.post1
six 1.15.0
stack-data 0.6.3
sympy 1.12
tabulate 0.9.0
tenacity 8.4.1
tensorboard 2.14.0
tensorboard-data-server 0.7.2
tensorboardX 2.6.2.2
tensorflow 2.6.0
tensorflow-estimator 2.15.0
termcolor 1.1.0
terminaltables 3.1.10
threadpoolctl 3.5.0
tifffile 2023.7.10
tomli 2.0.1
torch 2.3.1+cu121
torchaudio 2.3.1+cu121
torchvision 0.18.1+cu121
tqdm 4.65.2
traitlets 5.14.3
trimesh 4.4.1
triton 2.3.1
typing_extensions 4.8.0
tzdata 2024.1
urllib3 1.26.19
waymo-open-dataset-tf-2-6-0 1.4.9
wcwidth 0.2.13
Werkzeug 3.0.3
wheel 0.43.0
widgetsnbextension 4.0.11
wrapt 1.12.1
yapf 0.40.2
zipp 3.19.2
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 【自荐】一款简洁、开源的在线白板工具 Drawnix