一些常用Java序列化框架的比较
概念
序列化:将Java对象转化为字节数组
反序列化:将字节数组转化为Java对象
在RPC应用中,进行跨进程远程调用的时候,需要使用特定的序列化技术,需要对进行网络传输的对象进行序列化和反序列化。
影响序列化选择有两个因素
1. 序列化之后码流的大小,如果太大,那么将会影响网络传输的性能。
2. 序列化和反序列化过程的性能
常用的序列化框架性能比较
本文主要进行以下序列化框架的对比测试:
- JDK
- FastJson
- Hessian
- Protostuff
准备
需要序列化的对象,这是一个复杂的对象。
NettyMessage
public class NettyMessage implements Serializable { //消息头 private Header header; //消息体 private Object body; } @Data public class Header implements Serializable { //校验头 private int crcCode; //消息头消息体的总长度 private int length; //全局唯一id private long sessionId; //消息类型 private MessageType type; //扩展字段 private Map<String,Object> attachment; } @Data public class RpcRequest implements Serializable { private long requestId; //请求id private String interfaceName; //调用类名 private String methodName; //调用方法名 private String[] parameterTypes; //方法参数类型 private Object[] parameters; //方法参数 }
创建一个构造器创建该对象。
public class NettyMessageBuilder { public static NettyMessage build(){ NettyMessage message = new NettyMessage(); Header header = new Header(); RpcRequest request = new RpcRequest(); header.setCrcCode(1234); header.setType(MessageType.APP_RESPONE_TYPE); header.setLength(100); header.setSessionId(200); Map<String,Object> map = new LinkedHashMap<>(); map.put("demoKey",(Object)"demoValue"); header.setAttachment(map); request.setInterfaceName("com.demo"); String[] types = {"java.lang.String" ,"java.lang.Integer"}; String[] param = {"java.lang.String" ,"java.lang.Integer"}; request.setParameterTypes(types); request.setParameters(param); request.setMethodName("buy"); request.setRequestId(123456); message.setHeader(header); message.setBody(request); return message; } }
定义序列化接口
public abstract class AbstractSerialize { public abstract <T> byte[] serialize(T obj); public abstract <T> T deserialize(byte[] data, Class<T> clazz); }
JDK
实现
public class JdkSerializeUtil extends AbstractSerialize { public <T> byte[] serialize(T obj) { if (obj == null){ throw new NullPointerException(); } ByteArrayOutputStream bos = new ByteArrayOutputStream(); try { ObjectOutputStream oos = new ObjectOutputStream(bos); oos.writeObject(obj); return bos.toByteArray(); } catch (Exception ex) { ex.printStackTrace(); } return new byte[0]; } public <T> T deserialize(byte[] data, Class<T> clazz) { ByteArrayInputStream bis = new ByteArrayInputStream(data); try { ObjectInputStream ois = new ObjectInputStream(bis); T obj = (T)ois.readObject(); return obj; } catch (Exception ex) { ex.printStackTrace(); } return null; } }
FastJson
引入pom
<dependency> <groupId>com.alibaba</groupId> <artifactId>fastjson</artifactId> <version>1.2.56</version> </dependency>
实现
public class FastjsonSerializeUtil extends AbstractSerialize { public <T> byte[] serialize(T obj) { if (obj == null){ throw new NullPointerException(); } String json = JSON.toJSONString(obj); byte[] data = json.getBytes(); return data; } public <T> T deserialize(byte[] data, Class<T> clazz) { T obj = JSON.parseObject(new String(data),clazz); return obj; } }
Hessian
<dependency> <groupId>com.caucho</groupId> <artifactId>hessian</artifactId> <version>4.0.60</version> </dependency>
实现
@Slf4j public class HessianSerializeUtil extends AbstractSerialize { public <T> byte[] serialize(T obj) { if (obj == null){ throw new NullPointerException(); } try{ ByteArrayOutputStream bos = new ByteArrayOutputStream(); HessianOutput ho = new HessianOutput(bos); ho.writeObject(obj); return bos.toByteArray(); } catch(Exception ex){ log.error("HessianSerializeUtil序列化发生异常!"+ex); throw new RuntimeException(); } } public <T> T deserialize(byte[] data, Class<T> clazz) { if (data == null){ throw new NullPointerException(); } try{ ByteArrayInputStream bis = new ByteArrayInputStream(data); HessianInput hi = new HessianInput(bis); return (T)hi.readObject(); } catch(Exception ex){ log.error("HessianSerializeUtil反序列化发生异常!"+ex); throw new RuntimeException(); } } }
Protostuff
<dependency> <groupId>io.protostuff</groupId> <artifactId>protostuff-core</artifactId> <version>1.6.0</version> <scope>compile</scope> </dependency> <!-- https://mvnrepository.com/artifact/io.protostuff/protostuff-runtime --> <dependency> <groupId>io.protostuff</groupId> <artifactId>protostuff-runtime</artifactId> <version>1.6.0</version> </dependency>
实现
public class ProtostuffSerializeUtil extends AbstractSerialize { /** * 避免每次序列化都重新申请Buffer空间 */ private static LinkedBuffer buffer = LinkedBuffer.allocate(LinkedBuffer.DEFAULT_BUFFER_SIZE); /** * 缓存Schema */ private static Map<Class<?>, Schema<?>> schemaCache = new ConcurrentHashMap<Class<?>, Schema<?>>(); public <T> byte[] serialize(T obj) { if (obj == null){ throw new NullPointerException(); } Class<T> clazz = (Class<T>) obj.getClass(); Schema<T> schema = getSchema(clazz); byte[] data; try { data = ProtostuffIOUtil.toByteArray(obj, schema, buffer); } finally { buffer.clear(); } return data; } public <T> T deserialize(byte[] data, Class<T> clazz) { Schema<T> schema = getSchema(clazz); T obj = schema.newMessage(); ProtostuffIOUtil.mergeFrom(data, obj, schema); return obj; } private static <T> Schema<T> getSchema(Class<T> clazz) { Schema<T> schema = (Schema<T>) schemaCache.get(clazz); if (schema == null) { //这个schema通过RuntimeSchema进行懒创建并缓存 //所以可以一直调用RuntimeSchema.getSchema(),这个方法是线程安全的 schema = RuntimeSchema.getSchema(clazz); if (schema != null) { schemaCache.put(clazz, schema); } } return schema; } }
测试
测试方法
@Test public void testFastJsonSerialize(){
//这里替换各种序列化实现类 AbstractSerialize serialize = new ProtostuffSerializeUtil(); NettyMessage message = NettyMessageBuilder.build(); TimeUtil timeUtil = new TimeUtil(); TimeUtil timeUtil1 = new TimeUtil(); NettyMessage result = null; byte[] serByte = serialize.serialize(message); System.out.println("字节长度:" + serByte.length); result = serialize.deserialize(serByte,NettyMessage.class);
//这里设置测试次数 for(int i = 0; i< 100000; i++){ //timeUtil.init(); timeUtil.start(); serByte = serialize.serialize(message); timeUtil.end(); //System.out.println("序列化时间:"+ timeUtil.getAvrTimeUs() + " Us"); timeUtil1.start(); result = serialize.deserialize(serByte,NettyMessage.class); timeUtil1.end(); } System.out.println("序列化时间:"+ timeUtil.getAvrTimeUs() + " Us"); System.out.println("反序列化时间:"+ timeUtil1.getAvrTimeUs() + " Us"); System.out.println("结果:" + result); }
这里定义了一个TimeUtil类来计时
public class TimeUtil { private long startTime; private long endTime; private long timeSum; private long count; public void init(){ timeSum = 0; count = 0; } public void start(){ startTime = System.nanoTime(); } public void end(){ endTime = System.nanoTime(); timeSum += (endTime-startTime); count++; } public long getAvrTimeNs(){ return (timeSum/count); } public long getAvrTimeUs(){ return (timeSum/count)/1000; } public long getAvrTimeMs(){ return (timeSum/count)/1000000; } }
码流大小(byte) | 10次(us) | 100次(us) | 1000次(us) | 10000次(us) | 100000次(us) | ||
FastJson | 305 | 116-243 | 106-185 | 90-140 | 26-39 | 8-12 | |
JDK | 866 | 383-777 | 502-1101 | 123-334 | 54-237 | 15-76 | |
Hessian | 520 | 959-3836 | 376-567 | 191-329 | 99-161 | 30-47 | |
Protostuff | 193 | 103-145 | 90-137 | 75-135 | 15-24 | 5-8 | |
注:
1. 码流单位为字节
2. 序列化耗时-反序列化耗时,单位为微秒
从以上测试可以看出
1. JDK方式的码流最大,不利于网络传输。
2. 从整体来看,Prorostuff的码流最小,序列化性能最好。
推荐:《Java常用技术和书籍推荐》
如果,您认为阅读这篇博客让您有些收获,不妨点击一下右下角的推荐按钮。
如果,您希望更容易地发现我的新博客,不妨关注一下。因为,我的写作热情也离不开您的肯定支持。
感谢您的阅读,如果您对我的博客所讲述的内容有兴趣,请继续关注我的后续博客。
本文版权归博客园-冬眠的山谷(https://www.cnblogs.com/lgjlife/)所有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出。