pytorch性能瓶颈检查

看到pytorch居然自带了瓶颈检查的工具:torch.utils.bottleneck 用法:
python -m torch.utils.bottleneck 待测脚本路径
例如你原来执行的是 python train.py,现在改成 python -m torch.utils.bottleneck train.py
写个测试用例:

import numpy as np

class RNN(object):
    def __init__(self, input_size, hidden_size, output_size):
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.output_size = output_size
        self.Wx = np.random.randn(self.input_size, self.hidden_size)
        self.Wh = np.random.randn(self.hidden_size, self.hidden_size)
        self.W = np.random.randn(self.hidden_size, self.output_size)
        self.bh = np.zeros((1, self.hidden_size))
        self.b = np.zeros((1, self.output_size))
        self.h = np.zeros((1, self.hidden_size))
    def forward(self, x):
        self.h = np.tanh(np.dot(x, self.Wx) + np.dot(self.h, self.Wh) + self.bh)
        y = np.dot(self.h, self.W) + self.b
        return y

# finbonacci sequence
def dfs(x):
    if x <= 1:
        return x
    return dfs(x-1) + dfs(x-2)


if __name__ == '__main__':
    rnn = RNN(input_size=2, hidden_size=2, output_size=2)
    x = np.array([[0, 1], [2, 3], [4, 5], [6, 7]])
    y = rnn.forward(x)
    tmp = dfs(30)
    print(tmp)
    print(y)

性能分析结果:

点击查看分析结果
(deeplearning) ➜  268week python -m torch.utils.bottleneck model.py
`bottleneck` is a tool that can be used as an initial step for debugging
bottlenecks in your program.

It summarizes runs of your script with the Python profiler and PyTorch's
autograd profiler. Because your script will be profiled, please ensure that it
exits in a finite amount of time.

For more complicated uses of the profilers, please see
https://docs.python.org/3/library/profile.html and
https://pytorch.org/docs/master/autograd.html#profiler for more information.
Running environment analysis...
Running your script with cProfile
832040
[[-0.90337846 -0.35234026]
 [-0.90253927 -0.52576657]
 [-0.88766077 -0.52643475]
 [-0.87231183 -0.52685616]]
Running your script with the autograd profiler...
832040
[[0.95950176 0.46764053]
 [2.72475046 1.42962624]
 [2.88909968 1.66971284]
 [2.90319655 1.70963283]]
--------------------------------------------------------------------------------
  Environment Summary
--------------------------------------------------------------------------------
PyTorch 1.9.0 DEBUG not compiled w/ CUDA
Running with Python 3.8 and 

`pip3 list` truncated output:
numpy==1.20.1
torch==1.9.0
torch-cluster==1.5.9
torch-geometric==2.0.2
torch-scatter==2.0.9
torch-sparse==0.6.12
torch-spline-conv==1.2.1
torch-summary==1.4.5
torch-tb-profiler==0.3.1
torchaudio==0.9.0a0+33b2469
torchfile==0.1.0
torchtext==0.10.0
torchvision==0.10.0
--------------------------------------------------------------------------------
  cProfile output
--------------------------------------------------------------------------------
         2692826 function calls (278 primitive calls) in 0.416 seconds

   Ordered by: internal time
   List reduced from 69 to 15 due to restriction <15>

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
2692537/1    0.414    0.000    0.414    0.414 model.py:20(dfs)
        5    0.001    0.000    0.001    0.000 {built-in method numpy.core._multiarray_umath.implement_array_function}
        1    0.000    0.000    0.000    0.000 /Users/rogn/opt/anaconda3/envs/deeplearning/lib/python3.8/site-packages/numpy/core/arrayprint.py:890(fillFormat)
        3    0.000    0.000    0.000    0.000 {method 'randn' of 'numpy.random.mtrand.RandomState' objects}
        2    0.000    0.000    0.001    0.000 {built-in method builtins.print}
        1    0.000    0.000    0.416    0.416 model.py:1(<module>)
        1    0.000    0.000    0.001    0.001 model.py:14(forward)
     13/1    0.000    0.000    0.000    0.000 /Users/rogn/opt/anaconda3/envs/deeplearning/lib/python3.8/site-packages/numpy/core/arrayprint.py:745(recurser)
       16    0.000    0.000    0.000    0.000 {built-in method numpy.core._multiarray_umath.dragon4_positional}
        1    0.000    0.000    0.000    0.000 {built-in method builtins.locals}
        1    0.000    0.000    0.001    0.001 /Users/rogn/opt/anaconda3/envs/deeplearning/lib/python3.8/site-packages/numpy/core/arrayprint.py:1500(_array_str_implementation)
        1    0.000    0.000    0.001    0.001 /Users/rogn/opt/anaconda3/envs/deeplearning/lib/python3.8/site-packages/numpy/core/arrayprint.py:409(_get_format_function)
        1    0.000    0.000    0.001    0.001 /Users/rogn/opt/anaconda3/envs/deeplearning/lib/python3.8/site-packages/numpy/core/arrayprint.py:516(array2string)
        1    0.000    0.000    0.000    0.000 model.py:4(__init__)
        1    0.000    0.000    0.000    0.000 /Users/rogn/opt/anaconda3/envs/deeplearning/lib/python3.8/site-packages/numpy/core/arrayprint.py:366(<lambda>)


--------------------------------------------------------------------------------
  autograd profiler output (CPU mode)
--------------------------------------------------------------------------------
        top 15 events sorted by cpu_time_total

显然这个程序的瓶颈在 model.py:20(dfs) 这个函数调用

posted @ 2021-11-21 23:50  Rogn  阅读(648)  评论(0编辑  收藏  举报