python时间序列分析
一、什么是时间序列
时间序列简单的说就是各时间点上形成的数值序列,时间序列分析就是通过观察历史数据预测未来的值。
在这里需要强调一点的是,时间序列分析并不是关于时间的回归,它主要是研究自身的变化规律的(这里不考虑含外生变量的时间序列)。
环境配置
python作为科学计算的利器,当然也有相关分析的包:statsmodels中tsa模块,当然这个包和SAS、R是比不了,但是python有另一个神器:pandas!pandas在时间序列上的应用,能简化我们很多的工作。这两个包pip就能安装。
数据准备
许多时间序列分析一样,本文同样使用航空乘客数据(AirPassengers.csv)作为样例。下载链接。
用pandas操作时间序列
# -*- coding:utf-8 -*- import numpy as np import pandas as pd from datetime import datetime import matplotlib.pylab as plt # 读取数据,pd.read_csv默认生成DataFrame对象,需将其转换成Series对象 df = pd.read_csv('AirPassengers.csv', encoding='utf-8', index_col='Month') df.index = pd.to_datetime(df.index) # 将字符串索引转换成时间索引 ts = df['Passengers'] # 生成pd.Series对象 # 查看数据格式 print(ts.head()) print(ts.head().index)
不知道为啥,时间隔1000,不过没什么影响。
查看某日的值既可以使用字符串作为索引,又可以直接使用时间对象作为索引
ts['2049-01-01'] ts[datetime(2049,1,1)]
两者的返回值都是第一个序列值:112
如果要查看某一年的数据,pandas也能非常方便的实现
ts['2049']
切片操作:
ts['2049-1' : '2049-6']
注意时间索引的切片操作起点和尾部都是包含的,这点与数值索引有所不同
pandas还有很多方便的时间序列函数,在后面的实际应用中在进行说明。
二、时间序列分析
1. 基本模型
自回归移动平均模型(ARMA(p,q))是时间序列中最为重要的模型之一,它主要由两部分组成: AR代表p阶自回归过程,MA代表q阶移动平均过程,其公式如下:
依据模型的形式、特性及自相关和偏自相关函数的特征,总结如下:
在时间序列中,ARIMA模型是在ARMA模型的基础上多了差分的操作。
2. 平稳性检验
我们知道序列平稳性是进行时间序列分析的前提条件,很多人都会有疑问,为什么要满足平稳性的要求呢?在大数定理和中心定理中要求样本同分布(这里同分布等价于时间序列中的平稳性),而我们的建模过程中有很多都是建立在大数定理和中心极限定理的前提条件下的,如果它不满足,得到的许多结论都是不可靠的。以虚假回归为例,当响应变量和输入变量都平稳时,我们用t统计量检验标准化系数的显著性。而当响应变量和输入变量不平稳时,其标准化系数不在满足t分布,这时再用t检验来进行显著性分析,导致拒绝原假设的概率增加,即容易犯第一类错误,从而得出错误的结论。
平稳时间序列有两种定义:严平稳和宽平稳
严平稳顾名思义,是一种条件非常苛刻的平稳性,它要求序列随着时间的推移,其统计性质保持不变。对于任意的τ,其联合概率密度函数满足:
严平稳的条件只是理论上的存在,现实中用得比较多的是宽平稳的条件。
宽平稳也叫弱平稳或者二阶平稳(均值和方差平稳),它应满足:
- 常数均值
- 常数方差
- 常数自协方差
平稳性检验:观察法和单位根检验法
基于此,我写了一个名为test_stationarity的统计性检验模块,以便将某些统计检验结果更加直观的展现出来。
# -*- coding:utf-8 -*- from statsmodels.tsa.stattools import adfuller import pandas as pd import matplotlib.pyplot as plt import numpy as np from statsmodels.graphics.tsaplots import plot_acf, plot_pacf # 移动平均图 def draw_trend(timeSeries, size): f = plt.figure(facecolor='white') # 对size个数据进行移动平均 rol_mean = timeSeries.rolling(window=size).mean() # 对size个数据进行加权移动平均 rol_weighted_mean = pd.DataFrame.ewm(timeSeries, span=size).mean() timeSeries.plot(color='blue', label='Original') rolmean.plot(color='red', label='Rolling Mean') rol_weighted_mean.plot(color='black', label='Weighted Rolling Mean') plt.legend(loc='best') plt.title('Rolling Mean') plt.show() def draw_ts(timeSeries): f = plt.figure(facecolor='white') timeSeries.plot(color='blue') plt.show() ''' Unit Root Test The null hypothesis of the Augmented Dickey-Fuller is that there is a unit root, with the alternative that there is no unit root. That is to say the bigger the p-value the more reason we assert that there is a unit root ''' def testStationarity(ts): dftest = adfuller(ts) # 对上述函数求得的值进行语义描述 dfoutput = pd.Series(dftest[0:4], index=['Test Statistic','p-value','#Lags Used','Number of Observations Used']) for key,value in dftest[4].items(): dfoutput['Critical Value (%s)'%key] = value return dfoutput # 自相关和偏相关图,默认阶数为31阶 def draw_acf_pacf(ts, lags=31): f = plt.figure(facecolor='white') ax1 = f.add_subplot(211) plot_acf(ts, lags=31, ax=ax1) ax2 = f.add_subplot(212) plot_pacf(ts, lags=31, ax=ax2) plt.show()
观察法,通俗的说就是通过观察序列的趋势图与相关图是否随着时间的变化呈现出某种规律。所谓的规律就是时间序列经常提到的周期性因素,现实中遇到得比较多的是线性周期成分,这类周期成分可以采用差分或者移动平均来解决,而对于非线性周期成分的处理相对比较复杂,需要采用某些分解的方法。下图为航空数据的线性图,可以明显的看出它具有年周期成分和长期趋势成分。平稳序列的自相关系数会快速衰减,下面的自相关图并不能体现出该特征,所以我们有理由相信该序列是不平稳的。
单位根检验:ADF是一种常用的单位根检验方法,他的原假设为序列具有单位根,即非平稳,对于一个平稳的时序数据,就需要在给定的置信水平上显著,拒绝原假设。ADF只是单位根检验的方法之一,如果想采用其他检验方法,可以安装第三方包arch,里面提供了更加全面的单位根检验方法,个人还是比较钟情ADF检验。以下为检验结果,其p值大于0.99,说明并不能拒绝原假设。
3. 平稳性处理
由前面的分析可知,该序列是不平稳的,然而平稳性是时间序列分析的前提条件,故我们需要对不平稳的序列进行处理将其转换成平稳的序列。
a. 对数变换
对数变换主要是为了减小数据的振动幅度,使其线性规律更加明显(我是这么理解的时间序列模型大部分都是线性的,为了尽量降低非线性的因素,需要对其进行预处理,也许我理解的不对)。对数变换相当于增加了一个惩罚机制,数据越大其惩罚越大,数据越小惩罚越小。这里强调一下,变换的序列需要满足大于0,小于0的数据不存在对数变换。
ts_log = np.log(ts)
test_stationarity.draw_ts(ts_log)
b. 平滑法
根据平滑技术的不同,平滑法具体分为移动平均法和指数平均法。
移动平均即利用一定时间间隔内的平均值作为某一期的估计值,而指数平均则是用变权的方法来计算均值
test_stationarity.draw_trend(ts_log, 12)
从上图可以发现窗口为12的移动平均能较好的剔除年周期性因素,而指数平均法是对周期内的数据进行了加权,能在一定程度上减小年周期因素,但并不能完全剔除,如要完全剔除可以进一步进行差分操作。
c. 差分
时间序列最常用来剔除周期性因素的方法当属差分了,它主要是对等周期间隔的数据进行线性求减。前面我们说过,ARIMA模型相对ARMA模型,仅多了差分操作,ARIMA模型几乎是所有时间序列软件都支持的,差分的实现与还原都非常方便。而statsmodel中,对差分的支持不是很好,它不支持高阶和多阶差分。
不过没关系,我们有pandas。我们可以先用pandas将序列差分好,然后在对差分好的序列进行ARIMA拟合,只不过这样后面会多了一步人工还原的工作。
diff_12 = ts_log.diff(12) diff_12.dropna(inplace=True) diff_12_1 = diff_12.diff(1) diff_12_1.dropna(inplace=True) test_stationarity.testStationarity(diff_12_1)
从上面的统计检验结果可以看出,经过12阶差分和1阶差分后,该序列满足平稳性的要求了。
d. 分解
所谓分解就是将时序数据分离成不同的成分。statsmodels使用的X-11分解过程,它主要将时序数据分离成长期趋势、季节趋势和随机成分。与其它统计软件一样,statsmodels也支持两类分解模型,加法模型和乘法模型,这里我只实现加法,乘法只需将model的参数设置为”multiplicative”即可。
from statsmodels.tsa.seasonal import seasonal_decompose decomposition = seasonal_decompose(ts_log, model="additive") trend = decomposition.trend seasonal = decomposition.seasonal residual = decomposition.resid trend.plot() #seasonal.plot() #residual.plot() plt.show()
得到不同的分解成分后,就可以使用时间序列模型对各个成分进行拟合,当然也可以选择其他预测方法。我曾经用过小波对时序数据进行过分解,然后分别采用时间序列拟合,效果还不错。由于我对小波的理解不是很好,只能简单的调用接口,如果有谁对小波、傅里叶、卡尔曼理解得比较透,可以将时序数据进行更加准确的分解,由于分解后的时序数据避免了他们在建模时的交叉影响,所以我相信它将有助于预测准确性的提高。
4. 模型识别
在前面的分析可知,该序列具有明显的年周期与长期成分。对于年周期成分我们使用窗口为12的移动平进行处理,对于长期趋势成分我们采用1阶差分来进行处理。
rol_mean = ts_log.rolling(window=12).mean() rol_mean.dropna(inplace=True) ts_diff_1 = rol_mean.diff(1) ts_diff_1.dropna(inplace=True) test_stationarity.testStationarity(ts_diff_1)
观察其统计量发现该序列在置信水平为95%的区间下并不显著,我们对其进行再次一阶差分。再次差分后的序列其自相关具有快速衰减的特点,t统计量在99%的置信水平下是显著的,这里我不再做详细说明。
ts_diff_2 = ts_diff_1.diff(1)
ts_diff_2.dropna(inplace=True)
数据平稳后,需要对模型定阶,即确定p、q的阶数。观察上图,发现自相关和偏相系数都存在拖尾的特点,并且他们都具有明显的一阶相关性,所以我们设定p=1, q=1。下面就可以使用ARMA模型进行数据拟合了。这里我不使用ARIMA(ts_diff_1, order=(1, 1, 1))进行拟合,是因为含有差分操作时,预测结果还原老出问题,至今还没弄明白。
from statsmodels.tsa.arima_model import ARMA model = ARMA(ts_diff_2, order=(1, 1)) result_arma = model.fit( disp=-1, method='css')
5. 样本拟合
模型拟合完后,我们就可以对其进行预测了。由于ARMA拟合的是经过相关预处理后的数据,故其预测值需要通过相关逆变换进行还原。
predict_ts = result_arma.predict() # 一阶差分还原 diff_shift_ts = ts_diff_1.shift(1) diff_recover_1 = predict_ts.add(diff_shift_ts) # 再次一阶差分还原 rol_shift_ts = rol_mean.shift(1) diff_recover = diff_recover_1.add(rol_shift_ts) # 移动平均还原 rol_sum = ts_log.rolling(window=11).sum() rol_recover = diff_recover*12 - rol_sum.shift(1) # 对数还原 log_recover = np.exp(rol_recover) log_recover.dropna(inplace=True)
我们使用均方根误差(RMSE)来评估模型样本内拟合的好坏。利用该准则进行判别时,需要剔除“非预测”数据的影响。
ts = ts[log_recover.index] # 过滤没有预测的记录 plt.figure(facecolor='white') log_recover.plot(color='blue', label='Predict') ts.plot(color='red', label='Original') plt.legend(loc='best') plt.title('RMSE: %.4f'% np.sqrt(sum((log_recover-ts)**2)/ts.size)) plt.show()
观察上图的拟合效果,均方根误差为11.8828,感觉还过得去。
6. 完善ARIMA模型
前面提到statsmodels里面的ARIMA模块不支持高阶差分,我们的做法是将差分分离出来,但是这样会多了一步人工还原的操作。基于上述问题,我将差分过程进行了封装,使序列能按照指定的差分列表依次进行差分,并相应的构造了一个还原的方法,实现差分序列的自动还原。
# 差分操作 def diff_ts(ts, d): global shift_ts_list # 动态预测第二日的值时所需要的差分序列 global last_data_shift_list shift_ts_list = [] last_data_shift_list = [] tmp_ts = ts for i in d: last_data_shift_list.append(tmp_ts[-i]) print(last_data_shift_list) shift_ts = tmp_ts.shift(i) shift_ts_list.append(shift_ts) tmp_ts = tmp_ts - shift_ts tmp_ts.dropna(inplace=True) return tmp_ts # 还原操作 def predict_diff_recover(predict_value, d): if isinstance(predict_value, float): tmp_data = predict_value for i in range(len(d)): tmp_data = tmp_data + last_data_shift_list[-i-1] elif isinstance(predict_value, np.ndarray): tmp_data = predict_value[0] for i in range(len(d)): tmp_data = tmp_data + last_data_shift_list[-i-1] else: tmp_data = predict_value for i in range(len(d)): try: tmp_data = tmp_data.add(shift_ts_list[-i-1]) except: raise ValueError('What you input is not pd.Series type!') tmp_data.dropna(inplace=True) return tmp_data
现在我们直接使用差分的方法进行数据处理,并以同样的过程进行数据预测与还原。
# 差分 diffed_ts = diff_ts(ts_log, d=[12, 1]) # 预测 from statsmodels.tsa.arima_model import ARMA model = ARMA(diffed_ts, order=(1, 1)) result_arma = model.fit( disp=-1, method='css') predict_ts = result_arma.predict() # 还原 predict_ts = model.properModel.predict() diff_recover_ts = predict_diff_recover(predict_ts, d=[12, 1]) log_recover = np.exp(diff_recover_ts) # 绘制结果 ts = ts[log_recover.index] # 过滤没有预测的记录 plt.figure(facecolor='white') log_recover.plot(color='blue', label='Predict') ts.plot(color='red', label='Original') plt.legend(loc='best') plt.title('RMSE: %.4f'% np.sqrt(sum((log_recover-ts)**2)/ts.size)) plt.show()
是不是发现这里的预测结果和上一篇的使用12阶移动平均的预测结果一模一样。这是因为12阶移动平均加上一阶差分与直接12阶差分是等价的关系,后者是前者数值的12倍,这个应该不难推导。
7. BIC准则
8. 滚动预测
9. 模型序列化
三、总结
与其它统计语言(SAS和R)相比,python在统计分析这块还显得不那么“专业”。随着numpy、pandas、scipy、sklearn、gensim、statsmodels等包的推动,我相信也祝愿python在数据分析这块越来越好。