hdu4767 Bell——求第n项贝尔数

题意

设第 $n$ 个Bell数为 $B_n$,求 $B_n \ mod  \ 95041567$.($1 \leq  n  \leq  2^{31}$)

分析

贝尔数的概念和性质,维基百科上有,这里用到两点。

  • 若 $p$ 是任意素数,有 $B_{p+n} = B_n + B_{n+1}(mod \ p)$
  • 每个贝尔数都是相应第二类斯特林数之和,即 $B_n = \sum_{k=1}^nS(n, k)$

贝尔数的这个递推式只适合质数,我们可以将模数拆成质数,然后用CRT合并。

$95041567 = 31 \times 37 \times 41 \times 43 \times 47$,所以预处理前50个,

对于 $n > 50$,使用递推式,递推式可转成矩阵乘法,如下:

$$\begin{bmatrix} 0 & 0 & \cdots  & 1\\
1 & 1 & \cdots & 0\\  \vdots & \vdots &\ddots   & \vdots\\  0 & \cdots & 1 & 1 \end{bmatrix} \times
\begin{bmatrix} B_n\\  B_{n+1}\\  \vdots\\  B_{n+p-1} \end{bmatrix} =
\begin{bmatrix} B_{n+p-1}\\  B_{n+p}\\  \vdots \\  B_{n+2p-2} \end{bmatrix}$$

即 $B_{n+p-1} = A  B_n$

设 $t = n / (p-1), k = n \% (p-1)$,

如果利用 $B_n = A^tB_k$,需要多预处理一倍,但计算时只需求第一个元素;

若利用 $B_{(p-1)t} = A^t B_0$,只需预处理前 $p-1$ 个,但是计算时需要算出第 $k$ 个。

反正两者时间也几乎一样。

时间复杂度为 $O(5\cdot p^3 log{\frac{n}{p}})$

#include<bits/stdc++.h>
using namespace std;

typedef long long ll;
const int maxn = 50;
const int mod = 95041567;

int m[5] = {31, 37, 41, 43, 47};
int Sti[2*maxn][2*maxn], bell[5][2*maxn];  //第二类司特林数、贝尔数

void Stirling2()
{
    Sti[0][0] = 1;
    for(int i = 0;i <= 2*maxn;i++)
        for(int j = 1;j <= i;j++)
            Sti[i][j] = (Sti[i-1][j-1] + 1LL * j * Sti[i-1][j]) % mod;
}

void init()
{
    Stirling2();
    for(int i = 0;i < 5;i++)
    {
        bell[i][0] = 1;
        for(int j = 1;j <= 2*m[i];j++)
        {
            bell[i][j] = 0;     //不知道为什么默认不是0
            for(int k = 1;k <= j;k++)
                bell[i][j] = (bell[i][j] + Sti[j][k]) % m[i];
            //printf("%d\t%d\n",j,bell[i][j]);
        }
    }
}

struct matrix
{
    int r, c;
    int mat[maxn][maxn];
    matrix(){
        memset(mat, 0, sizeof(mat));
    }
};

matrix mul(matrix A, matrix B, int p)   //矩阵相乘
{
    matrix ret;
    ret.r = A.r; ret.c = B.c;
    for(int i = 0;i < A.r;i++)
        for(int k = 0;k < A.c;k++)
            for(int j = 0;j < B.c;j++)
            {
                ret.mat[i][j] = (ret.mat[i][j] + 1LL * A.mat[i][k] * B.mat[k][j]) % p;
            }
    return ret;
}

matrix mpow(matrix A, int n, int p)
{
    matrix ret;
    ret.r = A.r; ret.c = A.c;
    for(int i = 0;i < ret.r;i++)  ret.mat[i][i] = 1;
    while(n)
    {
        if(n & 1)  ret = mul(ret, A, p);
        A = mul(A, A, p);
        n >>= 1;
    }
    return ret;
}

int solve(int n, int p, int k)  //计算Bn % p
{
    matrix A;
    A.r = A. c = p;
    A.mat[0][p-1] = 1;
    for(int i = 1;i < p;i++)
        A.mat[i][i-1] = A.mat[i][i] = 1;

    matrix tmp = mpow(A, n/(p-1), p);

    int ret = 0;
    for(int i = 0;i < p;i++)
        ret = (ret + tmp.mat[0][i] * bell[k][(n%(p-1))+i]) % p;
    return ret;}

//ax + by = d,且|x|+|y|最小,其中d=gcd(a,b)
//即使a, b在int范围内,x和y也有可能超过int范围
void exgcd(ll a, ll b, ll &d, ll &x, ll &y)
{
    if (!b){ d = a; x = 1; y = 0;}
    else{ exgcd(b, a % b, d, y, x); y -= x * (a / b);}
}

//n个方程:x=a[i](mod m[i])
ll china(int n, int* a, int* m)
{
    ll M = 1, d, y, x = 0;
    for (int i = 0; i < n; i++)  M *= m[i];
    for (int i = 0; i < n; i++)
    {
        ll w = M / m[i];
        exgcd(m[i], w, d, d, y);        //d共用了
        x = (x + y * w * a[i]) % M;   //x相当于sum
    }
    return (x + M) % M;
}

int n;
int res[5];

int main()
{
    init();

    int T;
    scanf("%d", &T);
    while(T--)
    {
        scanf("%d", &n);
        for(int i = 0;i < 5;i++)  res[i] = solve(n, m[i], i);

//        for(int i = 0;i < 5;i++)  printf("%d ", res[i]);
//        printf("\n");

        int ans = china(5, res, m);
        printf("%d\n", ans);
    }
    return 0;
}

第二种种写法:

#include<bits/stdc++.h>
using namespace std;

typedef long long ll;
const int maxn = 50;
const int mod = 95041567;

int m[5] = {31, 37, 41, 43, 47};
int Sti[maxn][maxn], bell[5][maxn];  //第二类司特林数、贝尔数

void Stirling2()
{
    Sti[0][0] = 1;
    for(int i = 0;i <= maxn;i++)
        for(int j = 1;j <= i;j++)
            Sti[i][j] = (Sti[i-1][j-1] + 1LL * j * Sti[i-1][j]) % mod;
}

void init()
{
    Stirling2();
    for(int i = 0;i < 5;i++)
    {
        bell[i][0] = 1;
        for(int j = 1;j <= m[i];j++)
        {
            bell[i][j] = 0;
            for(int k = 1;k <= j;k++)
                bell[i][j] = (bell[i][j] + Sti[j][k]) % m[i];
            //printf("%d\t%d\n",j,bell[i][j]);
        }
    }
}

struct matrix
{
    int r, c;
    int mat[maxn][maxn];
    matrix(){
        memset(mat, 0, sizeof(mat));
    }
};

matrix mul(matrix A, matrix B, int p)   //矩阵相乘
{
    matrix ret;
    ret.r = A.r; ret.c = B.c;
    for(int i = 0;i < A.r;i++)
        for(int k = 0;k < A.c;k++)
            for(int j = 0;j < B.c;j++)
            {
                ret.mat[i][j] = (ret.mat[i][j] + 1LL * A.mat[i][k] * B.mat[k][j]) % p;
            }
    return ret;
}

matrix mpow(matrix A, int n, int p)
{
    matrix ret;
    ret.r = A.r; ret.c = A.c;
    for(int i = 0;i < ret.r;i++)  ret.mat[i][i] = 1;
    while(n)
    {
        if(n & 1)  ret = mul(ret, A, p);
        A = mul(A, A, p);
        n >>= 1;
    }
    return ret;
}

int solve(int n, int p, int k)  //计算Bn % p
{
    matrix A;
    A.r = A. c = p;
    A.mat[0][p-1] = 1;
    for(int i = 1;i < p;i++)
        A.mat[i][i-1] = A.mat[i][i] = 1;

    matrix tmp = mpow(A, n/(p-1), p);

  //  int ret = 0;
//    for(int i = 0;i < p;i++)
//        ret = (ret + A.mat[0][i] * bell[k][i]) % p;

    int ans[p];
    for(int i = 0;i < p;i++)
    {
        ans[i] = 0;
        for(int j = 0;j < p;j++)
            ans[i] = (ans[i] + 1LL * bell[k][j] * tmp.mat[i][j]) % p;
    }


    return ans[n % (p-1)];
}

//ax + by = d,且|x|+|y|最小,其中d=gcd(a,b)
//即使a, b在int范围内,x和y也有可能超过int范围
void exgcd(ll a, ll b, ll &d, ll &x, ll &y)
{
    if (!b){ d = a; x = 1; y = 0;}
    else{ exgcd(b, a % b, d, y, x); y -= x * (a / b);}
}

//n个方程:x=a[i](mod m[i])
ll china(int n, int* a, int* m)
{
    ll M = 1, d, y, x = 0;
    for (int i = 0; i < n; i++)  M *= m[i];
    for (int i = 0; i < n; i++)
    {
        ll w = M / m[i];
        exgcd(m[i], w, d, d, y);        //d共用了
        x = (x + y * w * a[i]) % M;   //x相当于sum
    }
    return (x + M) % M;
}

int n;
int res[5];

int main()
{
    init();

    int T;
    scanf("%d", &T);
    while(T--)
    {
        scanf("%d", &n);
        for(int i = 0;i < 5;i++)  res[i] = solve(n, m[i], i);

//        for(int i = 0;i < 5;i++)  printf("%d ", res[i]);
//        printf("\n");

        int ans = china(5, res, m);
        printf("%d\n", ans);
    }
    return 0;
}
View Code

 

 

 

 另外一种方法是利用公式:

$$B_{p^m+n} = mB_n + B_{n+1}$$

于是,我们求 $Bell(n)(mod \ p)$ 时,先把 $n$ 写成 $p$ 进制,即

$$n = a_kp^k +...+a_1p+a_0$$

先预处理 $i < p, \ bell[i] = Bell(i)(mod \ p)$,对于大于 $p$ 的用公式。

#include<bits/stdc++.h>
using namespace std;

typedef long long ll;
const int maxn = 50;
const int mod = 95041567;

int m[5] = {31, 37, 41, 43, 47};
int Sti[maxn][maxn], bell[5][maxn];  //第二类司特林数、贝尔数

void Stirling2()
{
    Sti[0][0] = 1;
    for(int i = 0;i < maxn;i++)
        for(int j = 1;j <= i;j++)
            Sti[i][j] = (Sti[i-1][j-1] + 1LL * j * Sti[i-1][j]) % mod;
}

void init()
{
    Stirling2();
    for(int i = 0;i < 5;i++)
    {
        bell[i][0] = 1;
        for(int j = 1;j < maxn;j++)
        {
            bell[i][j] = 0;     //不知道为什么默认不是0
            for(int k = 1;k <= j;k++)
                bell[i][j] = (bell[i][j] + Sti[j][k]) % m[i];
            //printf("%d\t%d\n",j,bell[i][j]);
        }
    }
}


int solve(int n, int p, int k)  //计算Bn % p
{
    int a[maxn], B[maxn], d[maxn];
    for(int i = 0;i <= p;i++)  B[i] = bell[k][i];

    int cnt = 0;
    while(n)
    {
        a[cnt++] = n % p;
        n /= p;
    }

    for(int i = 1;i < cnt;i++)
        for(int j = 1;j <= a[i];j++)
        {
            for(int k = 0;k < p;k++)
                d[k] = (B[k+1] + i*B[k]) % p;
            d[p] = (d[0] + d[1]) % p;
            for(int k = 0;k <= p;k++)  B[k] = d[k];
        }
    //printf("after\n");
    return d[a[0]];
}

//ax + by = d,且|x|+|y|最小,其中d=gcd(a,b)
//即使a, b在int范围内,x和y也有可能超过int范围
void exgcd(ll a, ll b, ll &d, ll &x, ll &y)
{
    if (!b){ d = a; x = 1; y = 0;}
    else{ exgcd(b, a % b, d, y, x); y -= x * (a / b);}
}

//n个方程:x=a[i](mod m[i])
ll china(int n, int* a, int* m)
{
    ll M = 1, d, y, x = 0;
    for (int i = 0; i < n; i++)  M *= m[i];
    for (int i = 0; i < n; i++)
    {
        ll w = M / m[i];
        exgcd(m[i], w, d, d, y);        //d共用了
        x = (x + y * w * a[i]) % M;   //x相当于sum
    }
    return (x + M) % M;
}

int n;
int res[5];

int main()
{
    init();

    int T;
    scanf("%d", &T);
    while(T--)
    {
        scanf("%d", &n);
        if(n < maxn)
        {
            for(int i = 0;i < 5;i++)  res[i] = bell[i][n];
        }
        else
        {
            for(int i = 0;i < 5;i++)  res[i] = solve(n,m[i], i);
        }


//        for(int i = 0;i < 5;i++)  printf("%d ", res[i]);
//        printf("\n");

        int ans = china(5, res, m);
        printf("%d\n", ans);
    }
    return 0;
}
View Code

这种方法的复杂度大约为 $O(p^2)$,比前面的方法快了不少。

%%%Acdreamers,链接

 

参考链接:

1. https://zh.wikipedia.org/w/index.php?title=%E8%B4%9D%E5%B0%94%E6%95%B0

2. https://www.cnblogs.com/yuyixingkong/p/4489189.html

3. https://www.cnblogs.com/Chierush/p/3344661.html

 

posted @ 2019-09-18 23:25  Rogn  阅读(861)  评论(0编辑  收藏  举报