Python-OpenCV中的filter2D()函数

使用自定义内核对图像进行卷积。该功能将任意线性滤波器应用于图像。支持就地操作。当光圈部分位于图像外部时,该功能会根据指定的边框模式插入异常像素值。

 

 

语法

函数原型:

dst=cv.filter2D(src, ddepth, kernel[, dst[, anchor[, delta[, borderType]]]])

参数:

参数 描述
src 原图像
dst 目标图像,与原图像尺寸和通过数相同
ddepth 目标图像的所需深度
kernel 卷积核(或相当于相关核),单通道浮点矩阵;如果要将不同的内核应用于不同的通道,请使用拆分将图像拆分为单独的颜色平面,然后单独处理它们。
anchor 内核的锚点,指示内核中过滤点的相对位置;锚应位于内核中;默认值(-1,-1)表示锚位于内核中心。
detal 在将它们存储在dst中之前,将可选值添加到已过滤的像素中。类似于偏置。
borderType 像素外推法,参见BorderTypes

该函数实际计算的是相关性,而不是卷积

$$\texttt{dst} (x,y) = \sum _{ \stackrel{0\leq x' < \texttt{kernel.cols},}{0\leq y' < \texttt{kernel.rows}} } \texttt{kernel} (x',y')* \texttt{src} (x+x'- \texttt{anchor.x} ,y+y'- \texttt{anchor.y} )$$

在内核足够大(~11x11或者更大)的时候,该函数使用DFT算法,对于小内核则直接计算。

也可见,anchor相当于坐标轴平移。

其中ddepth表示目标图像的所需深度,它包含有关图像中存储的数据类型的信息,可以是unsigned char(CV_8U),signed char(CV_8S),unsigned short(CV_16U)等等...

Input depth (src.depth())Output depth (ddepth)
CV_8U -1/CV_16S/CV_32F/CV_64F
CV_16U/CV_16S -1/CV_32F/CV_64F
CV_32F -1/CV_32F/CV_64F
CV_64F -1/CV_64F

 Note:当ddepth=-1时,表示输出图像与原图像有相同的深度。

 

例子

图像内核是一个小矩阵,用于应用您可能在Photoshop或Gimp中找到的效果,例如模糊,锐化,轮廓或浮雕。它们还用于机器学习中的“特征提取”,这是一种用于确定图像最重要部分的技术。在这种情况下,该过程更普遍地称为“卷积”(参见:卷积神经网络)。

有许多有趣的内核,下面一一介绍:

 1、模糊(blur)

模糊内核消除了相邻像素值之间的差异。内核如下:

0.0625 0.125 0.0625
0.125 0.25 0.125
0.0625 0.125 0.125

 

 

 

 

 代码:

import cv2
import numpy as np

def solve():

    src = cv2.imread("./Pictures/car001.jpg")
    if src is None:
        return -1

    kernel = np.array((
        [0.0625, 0.125, 0.0625],
        [0.125, 0.25, 0.125],
        [0.0625, 0.125, 0.0625]), dtype="float32")


    dst = cv2.filter2D(src, -1, kernel)
    htich = np.hstack((src, dst))
    cv2.imwrite("./Pictures/car.jpg", htich)
    cv2.imshow('merged_img', htich)
    cv2.waitKey(0)

    return 0


if __name__ == "__main__":
    solve()

效果:

 

2、索贝尔(sobel)

sobel内核用于仅显示特定方向上相邻像素值的差异,分为left sobel、right sobel(检测梯度的水平变化)、top sobel、buttom sobel(检测梯度的垂直变化)。

例如,buttom sobel

-1 -2 -1
0 0 0
1 2 1

 

 

 

 

代码与上面类似,只需修改krenel的值。

3、浮雕(emboss)

通过强调像素的差在给定方向的Givens深度的错觉。在这种情况下,沿着从左上到右下的直线的方向。

-2 -1 0
-1 1 1
0 1 2

 

 

 

 

效果:

4、大纲(outline)

一个轮廓内核(也称为“边缘”的内核)用于突出显示的像素值大的差异。具有接近相同强度的相邻像素旁边的像素在新图像中将显示为黑色,而与强烈不同的相邻像素相邻的像素将显示为白色。

-1 -1 -1
-1 8 -1
-1 -1 -1

 

 

 

 

效果:


5、锐化(sharpen)

锐化内核强调在相邻的像素值的差异。这使图像看起来更生动。

0 -1 0
-1 5 -1
0 -1 0

 

 

 

 

效果:

 

6、拉普拉斯算子(laplacian operator)

拉普拉斯算子可以用于边缘检测,对于检测图像中的模糊也非常有用。

0 1 0
1 -4 1
0 1 0

 

 

 

 

 

效果:

 

7、分身(identity)

这个非常简单,就是原图(不考虑边界时),How boring!

0 0 0
0 1 0
0 0 0

 

 

 

 

 

 

拓展部分

正如您在本博文中所收集的那样,我们必须  手动定义每个内核以应用各种操作,例如平滑,锐化和边缘检测。

如何定义内核达到你想要的效果,这并不是一件简单的事情。

现在有一种神经网络——CNN,通过应用卷积滤波器,非线性激活函数,汇集和反向传播,CNN能够学习过滤器(的权重),可以检测网络较低层中的边缘和类似blob的结构 - 然后使用边缘和结构作为构建块,最终在网络的更深层中检测更高级别的对象(即,面部,猫,狗,杯等)。这样就不必手动定义过滤器了。

 

参考链接:

1、Depth combination https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#filter_depths 

2、cv2.filter2d()opencv中ddepth参数的解释?https://stackoverflow.com/questions/43392956/explanation-for-ddepth-parameter-in-cv2-filter2d-opencv

3、Image-kernels Demo http://setosa.io/ev/image-kernels/

posted @ 2019-03-26 12:50  Rogn  阅读(61469)  评论(0编辑  收藏  举报