浙江省高等学校教师教育理论培训

微信搜索“毛凌志岗前心得”小程序

  博客园  :: 首页  :: 新随笔  :: 联系 :: 订阅 订阅  :: 管理
  12653 随笔 :: 2 文章 :: 617 评论 :: 608万 阅读

Maciej Pacula » k-means clustering example (Python)

I had to illustrate a k-means algorithm for my thesis, but I could not find any existing examples that were both simple and looked good on paper. See below for Python code that does just what I wanted.

#!/usr/bin/python
 
# Adapted from http://hackmap.blogspot.com/2007/09/k-means-clustering-in-scipy.html
 
import numpy
import matplotlib
matplotlib.use('Agg')
from scipy.cluster.vq import *
import pylab
pylab.close()
 
# generate 3 sets of normally distributed points around
# different means with different variances
pt1 = numpy.random.normal(1, 0.2, (100,2))
pt2 = numpy.random.normal(2, 0.5, (300,2))
pt3 = numpy.random.normal(3, 0.3, (100,2))
 
# slightly move sets 2 and 3 (for a prettier output)
pt2[:,0] += 1
pt3[:,0] -= 0.5
 
xy = numpy.concatenate((pt1, pt2, pt3))
 
# kmeans for 3 clusters
res, idx = kmeans2(numpy.array(zip(xy[:,0],xy[:,1])),3)
 
colors = ([([0.4,1,0.4],[1,0.4,0.4],[0.1,0.8,1])[i] for i in idx])
 
# plot colored points
pylab.scatter(xy[:,0],xy[:,1], c=colors)
 
# mark centroids as (X)
pylab.scatter(res[:,0],res[:,1], marker='o', s = 500, linewidths=2, c='none')
pylab.scatter(res[:,0],res[:,1], marker='x', s = 500, linewidths=2)
 
pylab.savefig('/tmp/kmeans.png')

The output looks like this (also available in vector format here):

The X’s mark cluster centers. Feel free to use any of these files for whatever purposes. An attribution would be nice, but is not required :-) .

posted on   lexus  阅读(574)  评论(0编辑  收藏  举报
编辑推荐:
· Linux glibc自带哈希表的用例及性能测试
· 深入理解 Mybatis 分库分表执行原理
· 如何打造一个高并发系统?
· .NET Core GC压缩(compact_phase)底层原理浅谈
· 现代计算机视觉入门之:什么是图片特征编码
阅读排行:
· 手把手教你在本地部署DeepSeek R1,搭建web-ui ,建议收藏!
· Spring AI + Ollama 实现 deepseek-r1 的API服务和调用
· 数据库服务器 SQL Server 版本升级公告
· 程序员常用高效实用工具推荐,办公效率提升利器!
· C#/.NET/.NET Core技术前沿周刊 | 第 23 期(2025年1.20-1.26)
历史上的今天:
2011-12-08 磁力链
2011-12-08 水木清华
2010-12-08 ruby rails时间处理
2010-12-08 rails ruby 时间 日期 处理
2010-12-08 jquery outerhtml
2010-12-08 javascript:void(0)
点击右上角即可分享
微信分享提示