浙江省高等学校教师教育理论培训

微信搜索“毛凌志岗前心得”小程序

  博客园  :: 首页  :: 新随笔  :: 联系 :: 订阅 订阅  :: 管理

数据结构复习之【图】 - Java开发笔记 - 青藤园

数据结构复习之【图】

一、基本术语

:由有穷、非空点集和边集合组成,简写成G(V,E);

Vertex:图中的顶点;

 

无向图:图中每条边都没有方向;

有向图:图中每条边都有方向;

 

无向边:边是没有方向的,写为(a,b)

有向边:边是有方向的,写为<a,b>

有向边也成为弧;开始顶点称为弧尾,结束顶点称为弧头;

 

简单图:不存在指向自己的边、不存在两条重复的边的图;

 

无向完全图:每个顶点之间都有一条边的无向图;

有向完全图:每个顶点之间都有两条互为相反的边的无向图;

 

稀疏图:边相对于顶点来说很少的图;

稠密图:边很多的图;

 

权重:图中的边可能会带有一个权重,为了区分边的长短;

:带有权重的图;

 

:与特定顶点相连接的边数;

出度、入度:对于有向图的概念,出度表示此顶点为起点的边的数目,入度表示此顶点为终点的边的数目;

 

:第一个顶点和最后一个顶点相同的路径;

简单环:除去第一个顶点和最后一个顶点后没有重复顶点的环;

 

连通图:任意两个顶点都相互连通的图;

极大连通子图:包含竟可能多的顶点(必须是连通的),即找不到另外一个顶点,使得此顶点能够连接到此极大连通子图的任意一个顶点;

连通分量:极大连通子图的数量;

强连通图:此为有向图的概念,表示任意两个顶点a,b,使得a能够连接到b,b也能连接到a 的图;

 

生成树:n个顶点,n-1条边,并且保证n个顶点相互连通(不存在环);

最小生成树:此生成树的边的权重之和是所有生成树中最小的;

 

AOV网:结点表示活动的网;

AOE网:边表示活动的持续时间的网;

二、图的存储结构

1.邻接矩阵

维持一个二维数组,arr[i][j]表示i到j的边,如果两顶点之间存在边,则为1,否则为0;

维持一个一维数组,存储顶点信息,比如顶点的名字;

下图为一般的有向图:

 

注意:如果我们要看vi节点邻接的点,则只需要遍历arr[i]即可;

 

下图为带有权重的图的邻接矩阵表示法:

 

缺点:邻接矩阵表示法对于稀疏图来说不合理,因为太浪费空间; 

2.邻接表

如果图示一般的图,则如下图:

 如果是网,即边带有权值,则如下图:

 

3.十字链表

只针对有向图;,适用于计算出度和入度;

顶点结点:

边结点:

 

好处:创建的时间复杂度和邻接链表相同,但是能够同时计算入度和出度;

4.邻接多重表

针对无向图; 如果我们只是单纯对节点进行操作,则邻接表是一个很好的选择,但是如果我们要在邻接表中删除一条边,则需要删除四个顶点(因为无向图);

在邻接多重表中,只需要删除一个节点,即可完成边的删除,因此比较方便;

因此邻接多重表适用于对边进行删除的操作;

顶点节点和邻接表没区别,边表节点如下图:

 

比如:

 

 

5.边集数组

合依次对边进行操作;

存储边的信息,如下图:

 

三、图的遍历

DFS

思想:往深里遍历,如果不能深入,则回朔;

比如:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/**
 * O(v+e)
 */
@Test
public void DFS() {
    for (int i = 0; i < g.nodes.length; i++) {
        if (!visited[i]) {
            DFS_Traverse(g, i);
        }
    }
}
 
private void DFS_Traverse(Graph2 g, int i) {
    visited[i] = true;
    System.out.println(i);
    EdgeNode node = g.nodes[i].next;
    while (node != null) {
        if (!visited[node.idx]) {
            DFS_Traverse(g, node.idx);
        }
        node = node.next;
    }
}

BFS

思想:对所有邻接节点遍历;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
<span style="white-space:pre;"> </span>/**
     * O(v+e)
     */
    @Test
    public void BFS() {
        ArrayList<Integer> list = new ArrayList<Integer>();
        for (int i = 0; i < g.nodes.length; i++) {
            if (!visited[i]) {
                visited[i] = true;
                list.add(i);
                System.out.println(i);
                while (!list.isEmpty()) {
                    int k = list.remove(0);
                    EdgeNode current = g.nodes[k].next;
                    while (current != null) {
                        if (!visited[current.idx]) {
                            visited[current.idx] = true;
                            System.out.println(current.idx);
                            list.add(current.idx);
                             
                        }
                        current = current.next;
                    }
                }
 
            }
        }
    }

四、最小生成树

prim

邻接矩阵存储;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
<span style="white-space:pre;"> </span>/**
     * 时间复杂度为O(n^2)
     * 适用于稠密图
     */
    @Test
    public void prim(){
        int cost[] = new int[9];
        int pre[] = new int[9];
         
        for(int i=0;i<g1.vertex.length;i++){
            cost[i] = g1.adjMatrix[0][i];
        }
        cost[0] = 0;
         
        for(int i=1;i<g1.vertex.length;i++){
            int min = 65536;
            int k = 0;
            for(int j=1;j<g1.vertex.length;j++){
                if(cost[j]!=0&&cost[j]<min){
                    min = cost[j];
                    k = j;
                }
            }
            cost[k] = 0;
            System.out.println(pre[k]+","+k);
            for(int j=1;j<g1.vertex.length;j++){
                if(cost[j]!=0&&g1.adjMatrix[k][j]<cost[j]){
                    pre[j] = k;
                    cost[j] = g1.adjMatrix[k][j];
                }
            }
        }
    }

krustral

边集数组存储;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
<span style="white-space:pre;"> </span>/**
     * 时间复杂度:O(eloge)
     * 适用于稀疏图
     */
    @Test
    public void krustral(){
        Edge[] edges = initEdges();
        int parent[] = new int[9];
        for(int i=0;i<edges.length;i++){
            Edge edge = edges[i];
            int m = find(parent,edge.begin);
            int n = find(parent,edge.end);
            if(m!=n){
                parent[m] = n;
                System.out.println(m+","+n);
            }
        }
         
    }
    private static int find(int[] parent, int f) {
        while (parent[f] > 0) {
            f = parent[f];
        }
        return f;
    }

五、最短路径

dijkstra算法

邻接矩阵存储;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
<span style="white-space:pre;"> </span>//O(n^2)
    @Test
    public void Dijkstra(){
        int distance[] = new int[9];
        int pre[] = new int[9];
        boolean finished[] = new boolean[9];
        finished[0] = true;
        for(int i=0;i<9;i++){
            distance[i] = g1.adjMatrix[0][i];
        }
        int k = 0;
        for(int i=1;i<9;i++){
            int min = 65536;
            for(int j=0;j<9;j++){
                if(!finished[j]&&distance[j]<min){
                    min = distance[j];
                    k = j;
                }
            }
            finished[k] = true;
            System.out.println(pre[k]+","+k);
            for(int j=1;j<9;j++){
                if(!finished[j]&&(min+g1.adjMatrix[k][j])<distance[j]){
                    distance[j] = min+g1.adjMatrix[k][j];
                    pre[j] = k;
                }
            }
        }
    }

Floyd

使用:
(1)邻接矩阵:存储图;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
<span style="white-space:pre;"> </span>/**
     * O(n^3)
     * 求出任意顶点之间的距离
     */
    @Test
    public void floyd(Graph1 g) {
        int i, j, k;
        int length = g.vertex.length;
        int dist[][] = new int[length][length];
        int pre[][] = new int[length][length];
        for (i = 0; i < g.vertex.length; i++) {
            for (j = 0; j < g.vertex.length; j++) {
                pre[i][j] = j;
                dist[i][j] = g.adjMatrix[i][j];
            }
        }
        for (i = 0; i < length; i++) {
            for (j = 0; j < g.vertex.length; j++) {
                for (k = 0; k < g.vertex.length; k++) {
                    if (dist[i][j] > dist[i][k] + dist[k][j]) {
                        dist[i][j] = dist[i][k] + dist[k][j];
                        pre[i][j] = pre[i][k];
                    }
                }
            }
 
        }
        System.out.println();
    }

六、拓扑排序

使用数据结构:

(1)栈:用来存放入度为0的节点;

(2)变种邻接列表:作为图的存储结构;此邻接列表的顶点节点还需要存放入度属性;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
/**
* O(n+e)
*/
private static String topologicalSort(Graph2 g2) {
        Stack<Integer> s = new Stack<Integer>();
        int count = 0;
        for(int i=0;i<g2.nodes.length;i++){
            if(g2.nodes[i].indegree==0){
                s.push(i);
            }
        }
        while(!s.isEmpty()){
            int value = s.pop();
            System.out.println(value+"、");
            count++;
            EdgeNode node = g2.nodes[value].next;
            while(node!=null){
                g2.nodes[node.idx].indegree--;
                if(g2.nodes[node.idx].indegree==0){
                    s.push(node.idx);
                }
                node = node.next;
            }
             
        }
        if(count<g2.nodes.length){
            return "error";
        }
        return "ok";
    }

七、关键路径

使用数据结构:
(1)变种邻接列表:同拓扑排序;
(2)变量:
ltv表示某个事件的最晚开始时间;
etv表示事件最早开始时间;
ete表示活动最早开始时间;
lte表示活动最晚开始时间;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
<span style="white-space:pre;"> </span>//O(n+e)<span style="white-space:pre;">  </span>@Test
    public void CriticalPath(){
         
        Stack<Integer> stack = topological_etv();
        int length = stack.size();
        if(stack==null){
            return ;
        }
        else{
            int[]ltv = new int[length];
            for(int i=0;i<stack.size();i++){
                ltv[i] = etv[stack.size()-1];
            }
            //从拓扑排序的最后开始计算ltv
            while(!stack.isEmpty()){
                int top = stack.pop();
                EdgeNode current = g.nodes[top].next;
                while(current!=null){
                    int idx = current.idx;
                    //最晚发生时间要取所有活动中最早的
                    if((ltv[idx]-current.weight)<ltv[top]){
                        ltv[top] = ltv[idx]-current.weight;
                    }
                }
            }
            int ete = 0;
            int lte = 0;
            for(int j=0;j<length;j++){
                EdgeNode current = g.nodes[j].next;
                while(current!=null){
                    int idx = current.idx;
                    ete = etv[j];
                    lte = ltv[idx]-current.weight;
                    if(ete==lte){
                        //是关键路径
                    }
                }
            }
             
        }
         
         
    }
    private Stack<Integer> topological_etv(){
        Stack<Integer> stack2 = new Stack<Integer>();
        Stack<Integer>stack1 = new Stack<Integer>();
        for(int i=0;i<g.nodes.length;i++){
            if(g.nodes[i].indegree==0){
                stack1.add(i);
            }
        }
        etv[] = new int[g.nodes.length];
        int count = 0;
        while(!stack1.isEmpty()){
            int top = stack1.pop();
            count++;
            stack2.push(top);
             
            EdgeNode current = g.nodes[top].next;
            while(current!=null){
                int idx = current.idx;
                if((--g.nodes[idx].indegree)==0){
                    stack1.push(idx);
                }
                if((etv[top]+current.weight)>etv[idx]){
                    etv[idx] = etv[top]+current.weight;
                }
                current = current.next;
            }
        }
        if(count<g.nodes.length){
            return null;
        }
        return stack2;
    }
来源:http://blog.csdn.net/xiazdong/article/details/7354411
posted on 2012-05-30 15:07  lexus  阅读(344)  评论(0编辑  收藏  举报