小a的旅行计划(BM模板)
题目链接:https://ac.nowcoder.com/acm/contest/223/B
题目大意:
小a终于放假了,它想在假期中去一些地方游玩,现在有N个景点,编号为1,2,…N1,2,…N,同时小b也想出去游玩。由于一些特殊♂原因,他们的旅行计划必须满足一些条件
首先,他们可以从这N个景点中任意选几个游玩
设小a选出的景点集合为A,小b选的景点集合为B,则需要满足
1. A,B的交集不能为空集
2. A,B不能相互包含(A=B也属于相互包含)
注意:在这里我们认为(A,B)是无序的,即(A,B)和(B,A)是同一种方案。
具体思路:暴力打表,然后把前15项放进BM里,然后就A了?
打表代码:
1 #include<bits/stdc++.h>
2 using namespace std;
3 # define ll long long
4 const int maxn = 2e5 + 100;
5 const int N = 100;
6 ll n;
7 map<vector<ll>,bool>vis;
8 map<pair<vector<ll>,vector<ll>>,bool >vis2;
9 map<int,int>bao;
10 bool judge(vector<ll>q1,vector<ll>q2)
11 {
12 int flag=1;
13 if(q1==q2)
14 return false;
15 bao.clear();
16 for(int i=0; i<q1.size(); i++)
17 {
18 bao[q1[i]]=1;
19 }
20 for(int i=0; i<q1.size(); i++)
21 {
22 for(int j=0; j<q2.size(); j++)
23 {
24 if(q1[i]==q2[j])
25 {
26 flag=0;
27 break;
28 }
29 }
30 if(!flag)
31 break;
32 }
33 if(flag)
34 return false;
35 int num=0;
36 for(int i=0; i<q2.size(); i++)
37 {
38 if(bao[q2[i]])
39 num++;
40 }
41 if(num==q2.size())
42 return false;
43 bao.clear();
44 for(int i=0; i<q2.size(); i++)
45 {
46 bao[q2[i]]=1;
47 }
48 num=0;
49 for(int i=0; i<q1.size(); i++)
50 {
51 if(bao[q1[i]])
52 num++;
53 }
54 if(num==q1.size())
55 return false;
56 return true;
57 }
58 vector<ll>q1;
59 vector<ll>q2;
60 bool check(ll tmp1,ll tmp2)
61 {
62 q1.clear();
63 q2.clear();
64 for(ll i=0; i<n; i++)
65 {
66 if((1ll<<i)&tmp1)
67 q1.push_back(i);
68 }
69 for(ll i=0; i<n; i++)
70 {
71 if((1ll<<i)&tmp2)
72 q2.push_back(i);
73 }
74 sort(q1.begin(),q1.end());
75 sort(q2.begin(),q2.end());
76 if(judge(q1,q2))
77 return true;
78 return false;
79 }
80 ll cal(ll n)
81 {
82 ll maxstate=(1ll<<n)-1;
83 ll sum=0;
84 for(ll i=0; i<=maxstate; i++)
85 {
86 for(ll j=0; j<=maxstate; j++)
87 {
88 if(check(i,j)&&vis2[make_pair(q1,q2)]==0)
89 {
90 vis2[make_pair(q1,q2)]=1;
91 vis2[make_pair(q2,q1)]=1;
92 sum++;
93 }
94 }
95 }
96 return sum;
97 }
98 int main()
99 {
100 // freopen("hqx.out","w",stdout);
101 //scanf("%d",&n);
102 for(ll i=1; i<=10; i++)
103 {
104 n=i;
105 vis.clear();
106 vis2.clear();
107 printf("%lld ",cal(n));
108 }
109
110 return 0;
111 }
BM模板:
1 #include <bits/stdc++.h>
2
3 using namespace std;
4 #define rep(i,a,n) for (long long i=a;i<n;i++)
5 #define per(i,a,n) for (long long i=n-1;i>=a;i--)
6 #define pb push_back
7 #define mp make_pair
8 #define all(x) (x).begin(),(x).end()
9 #define fi first
10 #define se second
11 #define SZ(x) ((long long)(x).size())
12 typedef vector<long long> VI;
13 typedef long long ll;
14 typedef pair<long long,long long> PII;
15 const ll mod=1e8+7;
16 ll powmod(ll a,ll b)
17 {
18 ll res=1;
19 a%=mod;
20 assert(b>=0);
21 for(; b; b>>=1)
22 {
23 if(b&1)
24 res=res*a%mod;
25 a=a*a%mod;
26 }
27 return res;
28 }
29 // head
30
31 long long _,n;
32 namespace linear_seq
33 {
34 const long long N=10010;
35 ll res[N],base[N],_c[N],_md[N];
36
37 vector<long long> Md;
38 void mul(ll *a,ll *b,long long k)
39 {
40 rep(i,0,k+k) _c[i]=0;
41 rep(i,0,k) if (a[i])
42 rep(j,0,k)
43 _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
44 for (long long i=k+k-1; i>=k; i--)
45 if (_c[i])
46 rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
47 rep(i,0,k) a[i]=_c[i];
48 }
49 long long solve(ll n,VI a,VI b)
50 {
51 // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
52 // printf("%d\n",SZ(b));
53 ll ans=0,pnt=0;
54 long long k=SZ(a);
55 assert(SZ(a)==SZ(b));
56 rep(i,0,k) _md[k-1-i]=-a[i];
57 _md[k]=1;
58 Md.clear();
59 rep(i,0,k) if (_md[i]!=0)
60 Md.push_back(i);
61 rep(i,0,k) res[i]=base[i]=0;
62 res[0]=1;
63 while ((1ll<<pnt)<=n)
64 pnt++;
65 for (long long p=pnt; p>=0; p--)
66 {
67 mul(res,res,k);
68 if ((n>>p)&1)
69 {
70 for (long long i=k-1; i>=0; i--)
71 res[i+1]=res[i];
72 res[0]=0;
73 rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
74 }
75 }
76 rep(i,0,k) ans=(ans+res[i]*b[i])%mod;
77 if (ans<0)
78 ans+=mod;
79 return ans;
80 }
81 VI BM(VI s)
82 {
83 VI C(1,1),B(1,1);
84 long long L=0,m=1,b=1;
85 rep(n,0,SZ(s))
86 {
87 ll d=0;
88 rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod;
89 if (d==0)
90 ++m;
91 else if (2*L<=n)
92 {
93 VI T=C;
94 ll c=mod-d*powmod(b,mod-2)%mod;
95 while (SZ(C)<SZ(B)+m)
96 C.pb(0);
97 rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
98 L=n+1-L;
99 B=T;
100 b=d;
101 m=1;
102 }
103 else
104 {
105 ll c=mod-d*powmod(b,mod-2)%mod;
106 while (SZ(C)<SZ(B)+m)
107 C.pb(0);
108 rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
109 ++m;
110 }
111 }
112 return C;
113 }
114 long long gao(VI a,ll n)
115 {
116 VI c=BM(a);
117 c.erase(c.begin());
118 rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod;
119 return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
120 }
121 };
122
123 int main()
124 {
125 scanf("%lld", &n);
126 printf("%lld\n",linear_seq::gao(VI{0,0,3,30,195,1050,5103,23310,102315,437250},n-1));
127 }