(FFT) A * B Problem Plus
题目链接:https://cn.vjudge.net/contest/280041#problem/F
题目大意:给你两个数,求这俩数相乘的结果。(长度最长5000)
具体思路:硬算肯定是不行的,比如说1024*1234 ,我们可以将1024转换成 (4*10^0 + 2*10^1 +0*10^2+1*10^3),然后1234转换成(4*10^0+3*10^1+2*10^2+1*10^3),然后我们就可以转换成多项式相乘来保证计算精度了。
AC代码:
#include<iostream> #include<cmath> #include<stdio.h> #include<cstring> #include<algorithm> using namespace std; # define ll long long const int mod = 1e9+7; const double PI = acos(-1.0); struct complex { double r,i; complex(double _r = 0,double _i = 0) { r = _r; i = _i; } complex operator +(const complex &b) { return complex(r+b.r,i+b.i); } complex operator -(const complex &b) { return complex(r-b.r,i-b.i); } complex operator *(const complex &b) { return complex(r*b.r-i*b.i,r*b.i+i*b.r); } }; void change(complex y[],int len) { int i,j,k; for(i = 1, j = len/2; i < len-1; i++) { if(i < j) swap(y[i],y[j]); k = len/2; while( j >= k) { j -= k; k /= 2; } if(j < k) j += k; } } void fft(complex y[],int len,int on) { change(y,len); for(int h = 2; h <= len; h <<= 1) { complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h)); for(int j = 0; j < len; j += h) { complex w(1,0); for(int k = j; k < j+h/2; k++) { complex u = y[k]; complex t = w*y[k+h/2]; y[k] = u+t; y[k+h/2] = u-t; w = w*wn; } } } if(on == -1) for(int i = 0; i < len; i++) y[i].r /= len; } const int maxn = 2e5+100;//开数组的时候注意,长度的话至少是开两倍的,因为是两个数组相加的!!。 complex x1[maxn],x2[maxn]; char str1[maxn],str2[maxn]; int sum[maxn]; int main() { while(scanf("%s %s",str1,str2)==2) { int len1=strlen(str1); int len2=strlen(str2); int len=1; while(len<len1*2||len<len2*2) len<<=1; for(int i=0; i<len1; i++) { x1[i]=complex(str1[len1-1-i]-'0',0); } for(int i=len1; i<len; i++) { x1[i]=complex(0,0); } for(int i=0; i<len2; i++) { x2[i]=complex(str2[len2-1-i]-'0',0); } for(int i=len2; i<len; i++) { x2[i]=complex(0,0); } fft(x1,len,1); fft(x2,len,1); for(int i=0; i<len; i++) { x1[i]=x1[i]*x2[i]; } fft(x1,len,-1); for(int i=0; i<len; i++) { sum[i]=(int)(x1[i].r+0.5); } for(int i=0; i<len; i++) { sum[i+1]+=sum[i]/10; sum[i]%=10; } len=len1+len2-1; while(sum[len]<=0&&len>0) len--; for(int i=len; i>=0; i--) { printf("%c",sum[i]+'0'); } printf("\n"); } return 0; }