矩阵快速幂(共轭函数两种递推式)

题目链接:https://cn.vjudge.net/contest/261339#problem/B

AC1:ans= x(n)+y(n)*sqrt(6),所以,ans=x(n)+y(n)*sqrt(6)+(x(n)-y(n)*sqrt(6))-(x(n)-y(n)*sqrt(6))=2*x(n)-(x(n)-y(n)*sqrt(6)),可以推出

(x(n)-y(n)*sqrt(6))是大于0小于等于1的,所以ans= 2*x(n)-1。

AC代码1:

#include<iostream>
#include<string>
#include<cstring>
#include<iomanip>
#include<stdio.h>
#include<cmath>
using namespace std;
# define mod 1024
# define ll long long
struct Matrix
{
    ll a[5][5];
    Matrix operator *(Matrix t)
    {
        Matrix temp;
        for(ll i=1; i<=2; i++)
        {
            for(ll j=1; j<=2; j++)
            {
                temp.a[i][j]=0;
                for(ll k=1; k<=2; k++)
                {
                    temp.a[i][j]+=((a[i][k]%mod)*(t.a[k][j]%mod)+mod)%mod;
                }
            }
        }
        return temp;
    }
};
ll quickpow(Matrix t,ll t1)
{
    t1--;
    Matrix temp=t;
    while(t1)
    {
        if(t1&1)temp=temp*t;
        t=t*t;
        t1>>=1;
    }
    ll x=(5*temp.a[1][1]%mod+2*temp.a[2][1]%mod)%mod;
    return (x*2-1)%mod;
}
int main()
{
    ll T;
    scanf("%lld",&T);
    while(T--)
    {
        Matrix temp;
        temp.a[1][1]=5;
        temp.a[1][2]=2;
        temp.a[2][1]=12;
        temp.a[2][2]=5;
        ll n;
        scanf("%lld",&n);
        if(n==1)printf("%lld\n",9);
        else
        {
            ll ans=quickpow(temp,n-1);
            printf("%lld\n",ans);
        }
    }
    return 0;
}

方法二:这个推得方法就和我的上一篇博客的推理方法是一样的了。直接写矩阵 

{10   -1}

{1      0}.

AC代码2:

#include<iostream>
#include<string>
#include<cstring>
#include<iomanip>
#include<cmath>
#include<stdio.h>
#include<algorithm>
#include<queue>
using namespace std;
# define ll long long
# define maxn
# define inf 0x3f3f3f3f
# define mod 1024
struct Matrix
{
    ll a[5][5];
    Matrix operator *(Matrix t)
    {
        Matrix temp;
        for(int i=1; i<=2; i++)
        {
            for(int j=1; j<=2; j++)
            {
                temp.a[i][j]=0;
                for(int k=1; k<=2; k++)
                {
                    temp.a[i][j]+=((a[i][k]%mod)*(t.a[k][j]%mod)+mod)%mod;
                }
            }
        }
        return temp;
    }
};
ll quickpow(Matrix t,ll t1)
{
    Matrix temp=t;
    t1--;
    while(t1)
    {
        if(t1&1)temp=temp*t;
        t=t*t;
        t1>>=1;
    }
    return (temp.a[1][1]*10%mod+temp.a[1][2]*2%mod+mod)%mod-1;
}
int main()
{
    ll T;
    scanf("%lld",&T);
    while(T--)
    {
        Matrix t;
        t.a[1][1]=10;
        t.a[1][2]=-1;
        t.a[2][1]=1;
        t.a[2][2]=0;
        ll n;
        scanf("%lld",&n);
        if(n==1)printf("%lld\n",9);
        else
        {
            ll ans=quickpow(t,n-1);
            printf("%lld\n",ans);
        }
    }
    return 0;
}

 

posted @ 2018-10-13 09:01  Let_Life_Stop  阅读(211)  评论(0编辑  收藏  举报