CF1264D2 Beautiful Bracket Sequence

我们枚举每两个字符的空档,统计一个空档左边有 \(l\) 个左括号,
右边有 \(r\) 个右括号,左边有 \(u\) 个问号,右边有 \(v\) 个问号。

则对于 \(p\) 的答案 \(ans_p\) 有:

\[ans_p=\sum\limits_{i=0}^{u}(l+i)\dbinom{u}{i}\dbinom{v}{l+i-r} \]

解释:
对于每个左边的问号枚举有几个变成左括号,则左边有 \(l+i\) 个左括号,方案数为 \(C_{u}^{i}\) ,右边的问号显然有 \(l+i-r\) 个变成右括号,则方案数为 \(C_{v}^{l+i-r}\) 相乘后求和即可。

弱化版直接暴力加和即可。

对于加强版显然 \(n<=1e6\) 直接枚举会 \(TLE\) ,于是考虑化简。

\[ans_p=\sum\limits_{i=0}^{u}l\dbinom{u}{i}\dbinom{v}{l+i-r}+\sum\limits_{i=0}^{u}i\dbinom{u}{i}\dbinom{v}{l+i-r} \]

\[ans_p=l\sum\limits_{i=0}^{u}\dbinom{u}{i}\dbinom{v}{v+r-l-i}+\sum\limits_{i=0}^{u}u\dbinom{u-1}{i-1}\dbinom{v}{v+r-l-i} \]

利用范德蒙恒等式得:

\[ans_p=l\dbinom{u+v}{v-l+r}+u\dbinom{u+v-1}{r+v-l-1} \]

于是将所有 \(ans\) 相加即可。

Code

#include<cstring>
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
namespace EMT{
	typedef long long ll;typedef double db;//(double)clock() / (double)CLOCKS_PER_SEC;
	#define pf printf
	#define F(i,a,b) for(register int i=a;i<=b;i++)
	#define D(i,a,b) for(register int i=a;i>=b;i--)
	inline int read(){int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();return x*f;}
	inline void file(){freopen("in.in","r",stdin);freopen("my.out","w",stdout);}
	inline int max(int a,int b){return a>b?a:b;}inline int min(int a,int b){return a<b?a:b;}
	inline void pi(int x){pf("%d ",x);}inline void pn(){pf("\n");}
	const int mod=998244353,N=1e6+100;int n,a[N],b[N],c[N],ans,jc[N];char s[N];
	inline int ksm(int a,int b){
		int ans=1;
		while(b){
			if(b&1)ans=1ll*ans*a%mod;
			a=1ll*a*a%mod;
			b>>=1;
		}return ans;
	}
	inline int C(int n,int m){
		if(n<m||m<0)return 0;
		if(!m)return 1;
		return (1ll*jc[n]*ksm(jc[m],mod-2)%mod)*ksm(jc[n-m],mod-2)%mod;
	}
	inline short main(){
		scanf("%s",s+1);n=strlen(s+1);
		F(i,1,n){
			a[i]=a[i-1],b[i]=b[i-1],c[i]=c[i-1];
			if(s[i]=='(')a[i]++;
			if(s[i]==')')b[i]++;
			if(s[i]=='?')c[i]++;
		}jc[0]=1;
		F(i,1,n)jc[i]=1ll*jc[i-1]*i%mod;
		F(i,1,n-1){
			int l=a[i],r=b[n]-b[i],u=c[i],v=c[n]-c[i];
			(ans+=(1ll*l*C(u+v,v-l+r)%mod+1ll*u*C(u+v-1,r+v-l-1)%mod)%mod)%=mod;
		}pi(ans);
		return 0;
	}
}
signed main(){return EMT::main();}
posted @ 2021-08-01 20:13  letitdown  阅读(28)  评论(0编辑  收藏  举报